Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(4): 989-1002.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29606351

RESUMEN

Huntington's disease (HD) is characterized by preferential loss of the medium spiny neurons in the striatum. Using CRISPR/Cas9 and somatic nuclear transfer technology, we established a knockin (KI) pig model of HD that endogenously expresses full-length mutant huntingtin (HTT). By breeding this HD pig model, we have successfully obtained F1 and F2 generation KI pigs. Characterization of founder and F1 KI pigs shows consistent movement, behavioral abnormalities, and early death, which are germline transmittable. More importantly, brains of HD KI pig display striking and selective degeneration of striatal medium spiny neurons. Thus, using a large animal model of HD, we demonstrate for the first time that overt and selective neurodegeneration seen in HD patients can be recapitulated by endogenously expressed mutant proteins in large mammals, a finding that also underscores the importance of using large mammals to investigate the pathogenesis of neurodegenerative diseases and their therapeutics.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/patología , Animales , Peso Corporal , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Sistemas CRISPR-Cas/genética , Corteza Cerebral/patología , Corteza Cerebral/ultraestructura , Cuerpo Estriado/patología , Cuerpo Estriado/ultraestructura , Modelos Animales de Enfermedad , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/mortalidad , Imagen por Resonancia Magnética , Neuronas/metabolismo , Neuronas/patología , Técnicas de Transferencia Nuclear , Tasa de Supervivencia , Porcinos , Repeticiones de Trinucleótidos
2.
EMBO J ; 42(21): e113448, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37737560

RESUMEN

The nucleosome remodeling and histone deacetylase (NuRD) complex physically associates with BCL11B to regulate murine T-cell development. However, the function of NuRD complex in mature T cells remains unclear. Here, we characterize the fate and metabolism of human T cells in which key subunits of the NuRD complex or BCL11B are ablated. BCL11B and the NuRD complex bind to each other and repress natural killer (NK)-cell fate in T cells. In addition, T cells upregulate the NK cell-associated receptors and transcription factors, lyse NK-cell targets, and are reprogrammed into NK-like cells (ITNKs) upon deletion of MTA2, MBD2, CHD4, or BCL11B. ITNKs increase OPA1 expression and exhibit characteristically elongated mitochondria with augmented oxidative phosphorylation (OXPHOS) activity. OPA1-mediated elevated OXPHOS enhances cellular acetyl-CoA levels, thereby promoting the reprogramming efficiency and antitumor effects of ITNKs via regulating H3K27 acetylation at specific targets. In conclusion, our findings demonstrate that the NuRD complex and BCL11B cooperatively maintain T-cell fate directly by repressing NK cell-associated transcription and indirectly through a metabolic-epigenetic axis, providing strategies to improve the reprogramming efficiency and antitumor effects of ITNKs.


Asunto(s)
Histonas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Animales , Humanos , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Dinámicas Mitocondriales , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Linfocitos T/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
Nucleic Acids Res ; 52(6): 2776-2791, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38366553

RESUMEN

5-Methylcytosine (m5C), an abundant RNA modification, plays a crucial role in regulating RNA fate and gene expression. While recent progress has been made in understanding the biological roles of m5C, the inability to introduce m5C at specific sites within transcripts has hindered efforts to elucidate direct links between specific m5C and phenotypic outcomes. Here, we developed a CRISPR-Cas13d-based tool, named reengineered m5C modification system (termed 'RCMS'), for targeted m5C methylation and demethylation in specific transcripts. The RCMS editors consist of a nuclear-localized dCasRx conjugated to either a methyltransferase, NSUN2/NSUN6, or a demethylase, the catalytic domain of mouse Tet2 (ten-eleven translocation 2), enabling the manipulation of methylation events at precise m5C sites. We demonstrate that the RCMS editors can direct site-specific m5C incorporation and demethylation. Furthermore, we confirm their effectiveness in modulating m5C levels within transfer RNAs and their ability to induce changes in transcript abundance and cell proliferation through m5C-mediated mechanisms. These findings collectively establish RCMS editors as a focused epitranscriptome engineering tool, facilitating the identification of individual m5C alterations and their consequential effects.


Asunto(s)
5-Metilcitosina , Técnicas Genéticas , Metilación , Metiltransferasas , Edición de ARN , Animales , Ratones , 5-Metilcitosina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Sistemas CRISPR-Cas , Humanos
4.
Cell Mol Life Sci ; 81(1): 156, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551746

RESUMEN

X chromosome inactivation (XCI) is a process that equalizes the expression of X-linked genes between males and females. It relies on Xist, continuously expressed in somatic cells during XCI maintenance. However, how Xist impacts XCI maintenance and its functional motifs remain unclear. In this study, we conducted a comprehensive analysis of Xist, using rabbits as an ideal non-primate model. Homozygous knockout of exon 1, exon 6, and repeat A in female rabbits resulted in embryonic lethality. However, X∆ReAX females, with intact X chromosome expressing Xist, showed no abnormalities. Interestingly, there were no significant differences between females with homozygous knockout of exons 2-5 and wild-type rabbits, suggesting that exons 2, 3, 4, and 5 are less important for XCI. These findings provide evolutionary insights into Xist function.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Humanos , Masculino , Animales , Conejos , Femenino , Inactivación del Cromosoma X/genética , ARN Largo no Codificante/genética , Cromosomas Humanos X , Cromosoma X/genética , Exones/genética
5.
Cell Mol Life Sci ; 81(1): 63, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38280977

RESUMEN

SpCas9 and AsCas12a are widely utilized as genome editing tools in human cells, but their applications are largely limited by their bulky size. Recently, AsCas12f1 protein, with a small size (422 amino acids), has been demonstrated to be capable of cleaving double-stranded DNA protospacer adjacent motif (PAM). However, low editing efficiency and large differences in activity against different genomic loci have been a limitation in its application. Here, we show that engineered AsCas12f1 sgRNA has significantly improved the editing efficiency in human cells and mouse embryos. Moreover, we successfully generated three stable mouse mutant disease models using the engineered CRISPR-AsCas12f1 system in this study. Collectively, our work uncovers the engineered AsCas12f1 system expands mini CRISPR toolbox, providing a remarkable promise for therapeutic applications.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Ratones , Animales , Humanos , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Streptococcus pyogenes , Edición Génica , Mutagénesis
6.
Nucleic Acids Res ; 51(18): 10075-10093, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650635

RESUMEN

None of the existing approaches for regulating gene expression can bidirectionally and quantitatively fine-tune gene expression to desired levels. Here, on the basis of precise manipulations of the Kozak sequence, which has a remarkable influence on translation initiation, we proposed and validated a novel strategy to directly modify the upstream nucleotides of the translation initiation codon of a given gene to flexibly alter the gene translation level by using base editors and prime editors. When the three nucleotides upstream of the translation initiation codon (named KZ3, part of the Kozak sequence), which exhibits the most significant base preference of the Kozak sequence, were selected as the editing region to alter the translation levels of proteins, we confirmed that each of the 64 KZ3 variants had a different translation efficiency, but all had similar transcription levels. Using the ranked KZ3 variants with different translation efficiencies as predictors, base editor- and prime editor-mediated mutations of KZ3 in the local genome could bidirectionally and quantitatively fine-tune gene translation to the anticipated levels without affecting transcription in vitro and in vivo. Notably, this strategy can be extended to the whole Kozak sequence and applied to all protein-coding genes in all eukaryotes.


Asunto(s)
Edición Génica , Iniciación de la Cadena Peptídica Traduccional , Codón/genética , Codón Iniciador/genética , Nucleótidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Células Eucariotas
7.
BMC Biol ; 22(1): 119, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769511

RESUMEN

BACKGROUND: Many efforts have been made to improve the precision of Cas9-mediated gene editing through increasing knock-in efficiency and decreasing byproducts, which proved to be challenging. RESULTS: Here, we have developed a human exonuclease 1-based genome-editing tool, referred to as exonuclease editor. When compared to Cas9, the exonuclease editor gave rise to increased HDR efficiency, reduced NHEJ repair frequency, and significantly elevated HDR/indel ratio. Robust gene editing precision of exonuclease editor was even superior to the fusion of Cas9 with E1B or DN1S, two previously reported precision-enhancing domains. Notably, exonuclease editor inhibited NHEJ at double strand breaks locally rather than globally, reducing indel frequency without compromising genome integrity. The replacement of Cas9 with single-strand DNA break-creating Cas9 nickase further increased the HDR/indel ratio by 453-fold than the original Cas9. In addition, exonuclease editor resulted in high microhomology-mediated end joining efficiency, allowing accurate and flexible deletion of targeted sequences with extended lengths with the aid of paired sgRNAs. Exonuclease editor was further used for correction of DMD patient-derived induced pluripotent stem cells, where 30.0% of colonies were repaired by HDR versus 11.1% in the control. CONCLUSIONS: Therefore, the exonuclease editor system provides a versatile and safe genome editing tool with high precision and holds promise for therapeutic gene correction.


Asunto(s)
Exodesoxirribonucleasas , Edición Génica , Edición Génica/métodos , Humanos , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Sistemas CRISPR-Cas , Células HEK293 , Enzimas Reparadoras del ADN
8.
Mol Psychiatry ; 28(9): 3739-3750, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37848710

RESUMEN

Despite intensive studies in modeling neuropsychiatric disorders especially autism spectrum disorder (ASD) in animals, many challenges remain. Genetic mutant mice have contributed substantially to the current understanding of the molecular and neural circuit mechanisms underlying ASD. However, the translational value of ASD mouse models in preclinical studies is limited to certain aspects of the disease due to the apparent differences in brain and behavior between rodents and humans. Non-human primates have been used to model ASD in recent years. However, a low reproduction rate due to a long reproductive cycle and a single birth per pregnancy, and an extremely high cost prohibit a wide use of them in preclinical studies. Canine model is an appealing alternative because of its complex and effective dog-human social interactions. In contrast to non-human primates, dog has comparable drug metabolism as humans and a high reproduction rate. In this study, we aimed to model ASD in experimental dogs by manipulating the Shank3 gene as SHANK3 mutations are one of most replicated genetic defects identified from ASD patients. Using CRISPR/Cas9 gene editing, we successfully generated and characterized multiple lines of Beagle Shank3 (bShank3) mutants that have been propagated for a few generations. We developed and validated a battery of behavioral assays that can be used in controlled experimental setting for mutant dogs. bShank3 mutants exhibited distinct and robust social behavior deficits including social withdrawal and reduced social interactions with humans, and heightened anxiety in different experimental settings (n = 27 for wild-type controls and n = 44 for mutants). We demonstrate the feasibility of producing a large number of mutant animals in a reasonable time frame. The robust and unique behavioral findings support the validity and value of a canine model to investigate the pathophysiology and develop treatments for ASD and potentially other psychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Animales , Perros , Humanos , Trastorno del Espectro Autista/genética , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Edición Génica , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
9.
Biotechnol Bioeng ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923503

RESUMEN

Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Gene editing technology repairs the conversion of the 6th base T to C in exon 7 of the paralogous SMN2 gene, compensating for the SMN protein expression and promoting the survival and function of motor neurons. However, low editing efficiency and unintended off-target effects limit the application of this technology. Here, we optimized a TaC9-adenine base editor (ABE) system by combining Cas9 nickase with the transcription activator-like effector (TALE)-adenosine deaminase fusion protein to effectively and precisely edit SMN2 without detectable Cas9 dependent off-target effects in human cell lines. We also generated human SMA-induced pluripotent stem cells (SMA-iPSCs) through the mutation of the splice acceptor or deletion of the exon 7 of SMN1. TaC9-R10 induced 45% SMN2 T6 > C conversion in the SMA-iPSCs. The SMN2 T6 > C splice-corrected SMA-iPSCs were directionally differentiated into motor neurons, exhibiting SMN protein recovery and antiapoptosis ability. Therefore, the TaC9-ABE system with dual guides from the combination of Cas9 with TALE could be a potential therapeutic strategy for SMA with high efficacy and safety.

10.
Cell Mol Life Sci ; 80(11): 346, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37924393

RESUMEN

The recently developed prime-editing (PE) technique is more precise than previously available techniques and permits base-to-base conversion, replacement, and insertions and deletions in the genome. However, previous reports show that the efficiency of prime editing is insufficient to produce genome-edited animals. In fact, prime-guide RNA (pegRNA) designs have posed a challenge in achieving favorable editing efficiency. Here, we designed prime binding sites (PBS) with a melting temperature (Tm) of 42 °C, leading to optimal performance in cells, and we found that the optimal Tm was affected by the culture temperature. In addition, the ePE3max system was developed by updating the PE architecture to PEmax and expressing engineered pegRNA (epegRNA) based on the original PE3 system. The updated ePE3max system can efficiently induce gene editing in mouse and rabbit embryos. Furthermore, we successfully generated a Hoxd13 (c. 671 G > T) mutation in mice and a Tyr (c. 572 del) mutation in rabbits by ePE3max. Overall, the editing efficiency of modified ePE3max systems is superior to that of the original PE3 system in producing genome-edited animals, which can serve as an effective and versatile genome-editing tool for precise genome modification in animal models.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Conejos , Animales , Ratones , Sitios de Unión , Modelos Animales , Mutación , Temperatura , Sistemas CRISPR-Cas/genética
11.
Nucleic Acids Res ; 50(9): 5384-5399, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35544322

RESUMEN

Establishing saturated mutagenesis in a specific gene through gene editing is an efficient approach for identifying the relationships between mutations and the corresponding phenotypes. CRISPR/Cas9-based sgRNA library screening often creates indel mutations with multiple nucleotides. Single base editors and dual deaminase-mediated base editors can achieve only one and two types of base substitutions, respectively. A new glycosylase base editor (CGBE) system, in which the uracil glycosylase inhibitor (UGI) is replaced with uracil-DNA glycosylase (UNG), was recently reported to efficiently induce multiple base conversions, including C-to-G, C-to-T and C-to-A. In this study, we fused a CGBE with ABE to develop a new type of dual deaminase-mediated base editing system, the AGBE system, that can simultaneously introduce 4 types of base conversions (C-to-G, C-to-T, C-to-A and A-to-G) as well as indels with a single sgRNA in mammalian cells. AGBEs can be used to establish saturated mutant populations for verification of the functions and consequences of multiple gene mutation patterns, including single-nucleotide variants (SNVs) and indels, through high-throughput screening.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Mutación INDEL , Mamíferos/genética , Mutación , Uracil-ADN Glicosidasa/genética
12.
BMC Biol ; 21(1): 155, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434184

RESUMEN

BACKGROUND: Adenine base editors (ABEs) are promising therapeutic gene editing tools that can efficiently convert targeted A•T to G•C base pairs in the genome. However, the large size of commonly used ABEs based on SpCas9 hinders its delivery in vivo using certain vectors such as adeno-associated virus (AAV) during preclinical applications. Despite a number of approaches having previously been attempted to overcome that challenge, including split Cas9-derived and numerous domain-deleted versions of editors, whether base editor (BE) and prime editor (PE) systems can also allow deletion of those domains remains to be proven. In this study, we present a new small ABE (sABE) with significantly reduced size. RESULTS: We discovered that ABE8e can tolerate large single deletions in the REC2 (Δ174-296) and HNH (Δ786-855) domains of SpCas9, and these deletions can be stacked together to create a new sABE. The sABE showed higher precision than the original ABE8e, with proximally shifted protospacer adjacent motif (PAM) editing windows (A3- A15), and comparable editing efficiencies to 8e-SaCas9-KKH. The sABE system efficiently generated A-G mutations at disease-relevant loci (T1214C in GAA and A494G in MFN2) in HEK293T cells and several canonical Pcsk9 splice sites in N2a cells. Moreover, the sABE enabled in vivo delivery in a single adeno-associated virus (AAV) vector with slight efficiency. Furthermore, we also successfully edited the genome of mouse embryos by microinjecting mRNA and sgRNA of sABE system into zygotes. CONCLUSIONS: We have developed a substantially smaller sABE system that expands the targeting scope and offers higher precision of genome editing. Our findings suggest that the sABE system holds great therapeutic potential in preclinical applications.


Asunto(s)
Edición Génica , Proproteína Convertasa 9 , ARN Guía de Sistemas CRISPR-Cas , Animales , Humanos , Ratones , Adenina , Células HEK293
13.
BMC Biol ; 21(1): 250, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946200

RESUMEN

BACKGROUND: Nme2ABE8e has been constructed and characterized as a compact, accurate adenine base editor with a less restrictive dinucleotide protospacer-adjacent motif (PAM: N4CC) but low editing efficiency at challenging loci in human cells. Here, we engineered a subset of domain-inlaid Nme2Cas9 base editors to bring the deaminase domain closer to the nontarget strand to improve editing efficiency. RESULTS: Our results demonstrated that Nme2ABE8e-797 with adenine deaminase inserted between amino acids 797 and 798 has a significantly increased editing efficiency with a wide editing window ranging from 4 to 18 bases in mammalian cells, especially at the sites that were difficult to edit by Nme2ABE8e. In addition, by swapping the PAM-interacting domain of Nme2ABE8e-797 with that of SmuCas9 or introducing point mutations of eNme2-C in Nme2ABE8e-797, we created Nme2ABE8e-797Smu and Nme2ABE8e-797-C, respectively, which exhibited robust activities at a wide range of sites with N4CN PAMs in human cells. Moreover, the modified domain-inlaid Nme2ABE8e can efficiently restore or install disease-related loci in Neuro-2a cells and mice. CONCLUSIONS: These novel Nme2ABE8es with increased on-target DNA editing and expanded PAM compatibility will expand the base editing toolset for efficient gene modification and therapeutic applications.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Animales , Humanos , Ratones , Proteína 9 Asociada a CRISPR/genética , Adenina/química , Edición Génica/métodos , ADN/genética , Mamíferos/genética
14.
Neurobiol Dis ; 182: 106135, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37142085

RESUMEN

Primary microcephaly (PMCPH) is a rare autosomal recessive neurodevelopmental disorder with a global prevalence of PMCPH ranging from 0.0013% to 0.15%. Recently, a homozygous missense mutation in YIPF5 (p.W218R) was identified as a causative mutation of severe microcephaly. In this study, we constructed a rabbit PMCPH model harboring YIPF5 (p.W218R) mutation using SpRY-ABEmax mediated base substitution, which precisely recapitulated the typical symptoms of human PMCPH. Compared with wild-type controls, the mutant rabbits exhibited stunted growth, reduced head circumference, altered motor ability, and decreased survival rates. Further investigation based on model rabbit elucidated that altered YIPF5 function in cortical neurons could lead to endoplasmic reticulum stress and neurodevelopmental disorders, interference of the generation of apical progenitors (APs), the first generation of progenitors in the developing cortex. Furthermore, these YIPF5-mutant rabbits support a correlation between unfolded protein responses (UPR) induced by endoplasmic reticulum stress (ERS), and the development of PMCPH, thus providing a new perspective on the role of YIPF5 in human brain development and a theoretical basis for the differential diagnosis and clinical treatment of PMCPH. To our knowledge, this is the first gene-edited rabbit model of PMCPH. The model better mimics the clinical features of human microcephaly than the traditional mouse models. Hence, it provides great potential for understanding the pathogenesis and developing novel diagnostic and therapeutic approaches for PMCPH.


Asunto(s)
Microcefalia , Ratones , Animales , Humanos , Conejos , Microcefalia/genética , Microcefalia/patología , Mutación/genética , Mutación Missense , Respuesta de Proteína Desplegada/genética , Estrés del Retículo Endoplásmico/genética , Proteínas de Transporte Vesicular/genética
15.
J Virol ; 96(24): e0162622, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453883

RESUMEN

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Interacciones Microbiota-Huesped , Proteínas de Transporte de Nucleótidos , Enfermedades de los Porcinos , Animales , Humanos , Adsorción , Coronavirus , Infecciones por Coronavirus/fisiopatología , Sistemas CRISPR-Cas , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Porcinos , Enfermedades de los Porcinos/fisiopatología , Tripsina , Interacciones Microbiota-Huesped/genética , Dominios Proteicos , Sitios de Unión
16.
FASEB J ; 36(11): e22611, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36250915

RESUMEN

Obesity is among the strongest risk factors for type 2 diabetes (T2D). The CREBRF missense allele rs373863828 (p. Arg457Gln, p. R457Q) is associated with increased body mass index but reduced risk of T2D in people of Pacific ancestry. To investigate the functional consequences of the CREBRF variant, we introduced the corresponding human mutation R457Q into the porcine genome. The CREBRFR457Q pigs displayed dramatically increased fat deposition, which was mainly distributed in subcutaneous adipose tissue other than visceral adipose tissue. The CREBRFR457Q variant promoted preadipocyte differentiation. The increased differentiation capacity of precursor adipocytes conferred pigs the unique histological phenotype that adipocytes had a smaller size but a greater number in subcutaneous adipose tissue (SAT) of CREBRFR457Q variant pigs. In addition, in SAT of CREBRFR457Q pigs, the contents of the peroxidative metabolites 4-hydroxy-nonenal and malondialdehyde were significantly decreased, while the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and catalase, was increased, which was in accordance with the declined level of the reactive oxygen species (ROS) in CREBRFR457Q pigs. Together, these data supported a causal role of the CREBRFR457Q variant in the pathogenesis of obesity, partly via adipocyte hyperplasia, and further suggested that reduced oxidative stress in adipose tissue may mediate the relative metabolic protection afforded by this variant despite the related obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Antioxidantes , Catalasa , Glutatión Peroxidasa/metabolismo , Humanos , Malondialdehído , Obesidad/genética , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo , Porcinos
17.
Mol Ther ; 30(1): 256-267, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34174445

RESUMEN

Compact CRISPR-Cas9 systems that can be packaged into an adeno-associated virus (AAV) show promise for gene therapy. However, the requirement of protospacer adjacent motifs (PAMs) restricts the target scope. To expand this repertoire, we revisited and optimized a small Cas9 ortholog derived from Streptococcus pasteurianus (SpaCas9) for efficient genome editing in vivo. We found that SpaCas9 enables potent targeting of 5'-NNGYRA-3' PAMs, which are distinct from those recognized by currently used small Cas9s; the Spa-cytosine base editor (CBE) and Spa-adenine base editor (ABE) systems efficiently generated robust C-to-T and A-to-G conversions both in vitro and in vivo. In addition, by exploiting natural variation in the PAM-interacting domain, we engineered three SpaCas9 variants to further expand the targeting scope of compact Cas9 systems. Moreover, mutant mice with efficient disruption of the Tyr gene were successfully generated by microinjection of SpaCas9 mRNA and the corresponding single guide RNA (sgRNA) into zygotes. Notably, all-in-one AAV delivery of SpaCas9 targeting the Pcsk9 gene in adult mouse liver produced efficient genome-editing events and reduced its serum cholesterol. Thus, with distinct PAMs and a small size, SpaCas9 will broaden the CRISPR-Cas9 toolsets for efficient gene modifications and therapeutic applications.


Asunto(s)
Edición Génica , Proproteína Convertasa 9 , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Ratones , Proproteína Convertasa 9/genética , ARN Guía de Kinetoplastida/genética , Streptococcus
18.
Mol Ther ; 30(7): 2443-2451, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35443934

RESUMEN

Predictable DNA off-target effect is one of the major safety concerns for the application of cytosine base editors (CBEs). To eliminate Cas9-dependent DNA off-target effects, we designed a novel effective CBE system with dual guiders by combining CRISPR with transcription activator-like effector (TALE). In this system, Cas9 nickase (nCas9) and cytosine deaminase are guided to the same target site to conduct base editing by single-guide RNA (sgRNA) and TALE, respectively. However, if nCas9 is guided to a wrong site by sgRNA, it will not generate base editing due to the absence of deaminase. Similarly, when deaminase is guided to a wrong site by TALE, base editing will not occur due to the absence of single-stranded DNA. In this way, Cas9- and TALE-dependent DNA off-target effects could be completely eliminated. Furthermore, by fusing TALE with YE1, a cytidine deaminase with minimal Cas9-independent off-target effect, we established a novel CBE that could induce efficient C-to-T conversion without detectable Cas9- or TALE-dependent DNA off-target mutations.


Asunto(s)
Citosina , ARN Guía de Kinetoplastida , Sistemas CRISPR-Cas , ADN/genética , Edición Génica , ARN Guía de Kinetoplastida/genética , Efectores Tipo Activadores de la Transcripción/genética
19.
J Biol Chem ; 296: 100464, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639162

RESUMEN

ß-thalassemia, an autosomal recessive blood disorder that reduces the production of hemoglobin, is majorly caused by the point mutation of the HBB gene resulting in reduced or absent ß-globin chains of the hemoglobin tetramer. Animal models recapitulating both the phenotype and genotype of human disease are valuable in the exploration of pathophysiology and for in vivo evaluation of novel therapeutic treatments. The docile temperament, short vital cycles, and low cost of rabbits make them an attractive animal model. However, ß-thalassemia rabbit models are currently unavailable. Here, using CRISPR/Cas9-mediated genome editing, we point mutated the rabbit ß-globin gene HBB2 with high efficiency and generated a ß-thalassemia rabbit model. Hematological and histological analyses demonstrated that the genotypic mosaic F0 displayed a mild phenotype of anemia, and the heterozygous F1 exhibited typical characteristics of ß-thalassemia. Whole-blood transcriptome analysis revealed that the gene expression was altered in HBB2-targeted when compared with WT rabbits. And the highly expressed genes in HBB2-targeted rabbits were enriched in lipid and iron metabolism, innate immunity, and hematopoietic processes. In conclusion, using CRISPR-mediated HBB2 knockout, we have created a ß-thalassemia rabbit model that accurately recapitulates the human disease phenotype. We believe this tool will be valuable in advancing the investigation of pathogenesis and novel therapeutic targets of ß-thalassemia and associated complications.


Asunto(s)
Modelos Animales de Enfermedad , Globinas beta/genética , Talasemia beta/genética , Animales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Ingeniería Genética/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Conejos , Globinas beta/metabolismo , Talasemia beta/metabolismo
20.
FASEB J ; 35(2): e21226, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33236397

RESUMEN

The Wiskott-Aldrich syndrome (WAS) is a severe recessive X-linked immunodeficiency resulting from loss-of-function mutations in the WAS gene. Mouse is the only mammalian model used for investigation of WAS pathogenesis. However, the mouse model does not accurately recapitulate WAS clinical phenotypes, thus, limiting its application in WAS clinical research. Herein, we report the generation of WAS knockout (KO) rabbits via embryo co-injection of Cas9 mRNA and a pair of sgRNAs targeting exons 2 and 7. WAS KO rabbits exhibited many symptoms similar to those of WAS patients, including thrombocytopenia, bleeding tendency, infections, and reduced numbers of T cell in the spleen and peripheral blood. The WAS KO rabbit model provides a new valuable tool for preclinical trials of WAS treatment.


Asunto(s)
Modelos Animales de Enfermedad , Conejos , Proteína del Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Animales , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Fenotipo , Síndrome de Wiskott-Aldrich/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA