RESUMEN
Antibodies have diverse applications due to their high reaction specificities but are sensitive to denaturation when a higher working temperature is required. We have developed a simple, highly scalable and generalizable chemical approach for stabilizing off-the-shelf antibodies against thermal and chemical denaturation. We demonstrate that the stabilized antibodies (termed SPEARs) can withstand up to 4 weeks of continuous heating at 55 °C and harsh denaturants, and apply our method to 33 tested antibodies. SPEARs enable flexible applications of thermocycling and denaturants to dynamically modulate their binding kinetics, reaction equilibrium, macromolecular diffusivity and aggregation propensity. In particular, we show that SPEARs permit the use of a thermally facilitated three-dimensional immunolabeling strategy (termed ThICK staining), achieving whole mouse brain immunolabeling within 72 h, as well as nearly fourfold deeper penetration with threefold less antibodies in human brain tissue. With faster deep-tissue immunolabeling and broad compatibility with tissue processing and clearing methods without the need for any specialized equipment, we anticipate the wide applicability of ThICK staining with SPEARs for deep immunostaining.
Asunto(s)
Anticuerpos , Encéfalo , Animales , Anticuerpos/metabolismo , Encéfalo/metabolismo , Humanos , RatonesRESUMEN
Selenocysteine is cotranslationally inserted into polypeptide chains by recoding the stop codon UGA. However, selenocysteine has also been found to be misincorporated into a small number of proteins displacing cysteines in previous studies, but such misincorporation has not yet been examined at the proteome level thoroughly. We performed label-free quantitative proteomics analysis on Escherichia coli grown in a high-selenium medium to obtain a fuller picture of selenocysteine misincorporation in its proteome. We found 139 misincorporation sites, including 54 recurred in all biological replicates, suggesting that some cysteine sites are more prone to be misincorporated than others. However, sequence and evolutionary conservation analysis showed no clear pattern among these misincorporation sites. We hypothesize that misincorporations occur randomly throughout the proteome, but the degradation rate of such misincorporated proteins varies depending on the impact of the misincorporation on protein function and stability, leading to the differential detectability of misincorporated sites by proteomics. Our hypothesis is further supported by two observations: (1) cells cultured with severely limited sulfur still retained a substantial proportion of normal cysteine counterparts of all of the found misincorporated proteins and (2) proteins involved in protein folding and proteolysis were highly upregulated in high-selenium culture.
Asunto(s)
Proteoma , Selenocisteína , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteómica , Selenocisteína/genéticaRESUMEN
The proteome informatics research group of the Association of Biomolecular Resource Facilities conducted a study to assess the community's ability to detect and characterize peptides bearing a range of biologically occurring post-translational modifications when present in a complex peptide background. A data set derived from a mixture of synthetic peptides with biologically occurring modifications combined with a yeast whole cell lysate as background was distributed to a large group of researchers and their results were collectively analyzed. The results from the twenty-four participants, who represented a broad spectrum of experience levels with this type of data analysis, produced several important observations. First, there is significantly more variability in the ability to assess whether a results is significant than there is to determine the correct answer. Second, labile post-translational modifications, particularly tyrosine sulfation, present a challenge for most researchers. Finally, for modification site localization there are many tools being employed, but researchers are currently unsure of the reliability of the results these programs are producing.
Asunto(s)
Péptidos/aislamiento & purificación , Procesamiento Proteico-Postraduccional/genética , Proteoma , Secuencia de Aminoácidos/genética , Mezclas Complejas/química , Mezclas Complejas/genética , Biología Computacional , Humanos , Péptidos/química , Péptidos/metabolismo , Análisis de Secuencia de ProteínaRESUMEN
Following an official announcement of the Chromosome-centric Human Proteome Project (C-HPP), the Chromosome 12 (Ch12) Consortium has been established by five representative teams from five Asian countries including Thailand (Siriraj Hospital, Mahidol University), Singapore (National University of Singapore), Taiwan (Academia Sinica), Hong Kong (The Chinese University of Hong Kong), and India (Institute of Bioinformatics). We have worked closely together to extensively and systematically analyze all missing and known proteins encoded by Ch12 for their tissue/cellular/subcellular localizations. The target organs/tissues/cells include kidney, brain, gastrointestinal tissues, blood/immune cells, and stem cells. In the later phase, post-translational modifications and functional significance of Ch12-encoded proteins as well as their associations with human diseases (i.e., immune diseases, metabolic disorders, and cancers) will be defined. We have collaborated with other chromosome teams, Human Kidney and Urine Proteome Project (HKUPP), AOHUPO Membrane Proteomics Initiative, and other existing HUPO initiatives in the Biology/Disease-Based Human Proteome Project (B/D-HPP) to delineate functional roles and medical implications of Ch12-encoded proteins. The data set to be obtained from this multicountry consortium will be an important piece of the jigsaw puzzle to fulfill the missions and goals of the C-HPP and the global Human Proteome Project (HPP).
Asunto(s)
Cromosomas Humanos Par 12/genética , Proteoma/genética , Cromosomas Humanos Par 12/metabolismo , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Especificidad de Órganos , Proteoma/metabolismo , Proyectos de InvestigaciónRESUMEN
Systems biology unravels the black box of signaling pathway of cells; but which has not been extensively applied to reveal the mechanistic synergy of a herbal formula. The therapeutic efficacies of a herbal formula having multi-target, multi-function and multi-pathway are the niches of traditional Chinese medicine (TCM). Here, we reported an integrated omics approach, coupled with the knockout of an active compound, to measure the regulation of cellular signaling, as to reveal the landscape in cultured rat osteoblasts having synergistic pharmacological efficacy of Danggui Buxue Tang (DBT), a Chinese herbal formula containing Angelicae Sinensis Radix and Astragali Radix. The changes in signaling pathways responsible for energy metabolism, RNA metabolism and protein metabolism showed distinct features between DBT and calycosin-depleted DBT. Here, our results show that calycosin within DBT can orchestrate the osteoblastic functions and signaling pathways of the entire herbal formula. This finding reveals the harmony of herbal medicine in pharmacological functions, as well as the design of drug/herbal medicine formulation. The integration of systems biology can provide novel and essential insights into the synergistic property of a herbal formula, which is a key in modernizing TCM.