Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L141-L153, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511516

RESUMEN

Obesity is associated with severe, difficult-to-control asthma, and increased airway oxidative stress. Mitochondrial reactive oxygen species (mROS) are an important source of oxidative stress in asthma, leading us to hypothesize that targeting mROS in obese allergic asthma might be an effective treatment. Using a mouse model of house dust mite (HDM)-induced allergic airway disease in mice fed a low- (LFD) or high-fat diet (HFD), and the mitochondrial antioxidant MitoQuinone (MitoQ), we investigated the effects of obesity and ROS on HDM-induced airway inflammation, remodeling, and airway hyperresponsiveness (AHR). Obese allergic mice showed increased lung tissue eotaxin, airway tissue eosinophilia, and AHR compared with lean allergic mice. MitoQ reduced airway inflammation, remodeling, and hyperreactivity in both lean and obese allergic mice, and tissue eosinophilia in obese-allergic mice. Similar effects were observed with decyl triphosphonium (dTPP+), the hydrophobic cationic moiety of MitoQ lacking ubiquinone. HDM-induced oxidative sulfenylation of proteins was increased particularly in HFD mice. Although only MitoQ reduced sulfenylation of proteins involved in protein folding in the endoplasmic reticulum (ER), ER stress was attenuated by both MitoQ and dTPP+ suggesting the anti-allergic effects of MitoQ are mediated in part by effects of its hydrophobic dTPP+ moiety reducing ER stress. In summary, oxidative signaling is an important mediator of allergic airway disease. MitoQ, likely through reducing protein oxidation and affecting the UPR pathway, might be effective for the treatment of asthma and specific features of obese asthma.


Asunto(s)
Asma , Eosinofilia , Animales , Asma/metabolismo , Pulmón/metabolismo , Obesidad/metabolismo , Inflamación/patología , Pyroglyphidae , Eosinofilia/patología , Modelos Animales de Enfermedad
2.
Thorax ; 77(7): 669-678, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34400514

RESUMEN

BACKGROUND: The role of club cells in the pathology of idiopathic pulmonary fibrosis (IPF) is not well understood. Protein disulfide isomerase A3 (PDIA3), an endoplasmic reticulum-based redox chaperone required for the functions of various fibrosis-related proteins; however, the mechanisms of action of PDIA3 in pulmonary fibrosis are not fully elucidated. OBJECTIVES: To examine the role of club cells and PDIA3 in the pathology of pulmonary fibrosis and the therapeutic potential of inhibition of PDIA3 in lung fibrosis. METHODS: Role of PDIA3 and aberrant club cells in lung fibrosis was studied by analyses of human transcriptome dataset from Lung Genomics Research Consortium, other public resources, the specific deletion or inhibition of PDIA3 in club cells and blocking SPP1 downstream of PDIA3 in mice. RESULTS: PDIA3 and club cell secretory protein (SCGB1A1) signatures are upregulated in IPF compared with control patients. PDIA3 or SCGB1A1 increases also correlate with a decrease in lung function in patients with IPF. The bleomycin (BLM) model of lung fibrosis showed increases in PDIA3 in SCGB1A1 cells in the lung parenchyma. Ablation of Pdia3, specifically in SCGB1A1 cells, decreases parenchymal SCGB1A1 cells along with fibrosis in mice. The administration of a PDI inhibitor LOC14 reversed the BLM-induced parenchymal SCGB1A1 cells and fibrosis in mice. Evaluation of PDIA3 partners revealed that SPP1 is a major interactor in fibrosis. Blocking SPP1 attenuated the development of lung fibrosis in mice. CONCLUSIONS: Our study reveals a new relationship with distally localised club cells, PDIA3 and SPP1 in lung fibrosis and inhibition of PDIA3 or SPP1 attenuates lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteína Disulfuro Isomerasas/metabolismo , Animales , Bleomicina , Células Epiteliales/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones , Osteopontina/genética , Osteopontina/metabolismo , Proteína Disulfuro Isomerasas/genética
3.
FASEB J ; 35(5): e21525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817836

RESUMEN

Glycolysis is a well-known process by which metabolically active cells, such as tumor or immune cells meet their high metabolic demands. Previously, our laboratory has demonstrated that in airway epithelial cells, the pleiotropic cytokine, interleukin-1 beta (IL1B) induces glycolysis and that this contributes to allergic airway inflammation and remodeling. Activation of glycolysis is known to increase NADPH reducing equivalents generated from the pentose phosphate pathway, linking metabolic reprogramming with redox homeostasis. In addition, numerous glycolytic enzymes are known to be redox regulated. However, whether and how redox chemistry regulates metabolic reprogramming more generally remains unclear. In this study, we employed a multi-omics approach in primary mouse airway basal cells to evaluate the role of protein redox biochemistry, specifically protein glutathionylation, in mediating metabolic reprogramming. Our findings demonstrate that IL1B induces glutathionylation of multiple proteins involved in metabolic regulation, notably in the glycolysis pathway. Cells lacking Glutaredoxin-1 (Glrx), the enzyme responsible for reversing glutathionylation, show modulation of multiple metabolic pathways including an enhanced IL1B-induced glycolytic response. This was accompanied by increased secretion of thymic stromal lymphopoietin (TSLP), a cytokine important in asthma pathogenesis. Targeted inhibition of glycolysis prevented TSLP release, confirming the functional relevance of enhanced glycolysis in cells stimulated with IL1B. Collectively, data herein point to an intriguing link between glutathionylation chemistry and glycolytic reprogramming in epithelial cells and suggest that glutathionylation chemistry may represent a therapeutic target in pulmonary pathologies with perturbations in the glycolysis pathway.


Asunto(s)
Reprogramación Celular , Glutarredoxinas/fisiología , Glutatión/metabolismo , Glucólisis , Inflamación/inmunología , Interleucina-1beta/farmacología , Pulmón/inmunología , Animales , Citocinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción
4.
J Exp Biol ; 224(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33944932

RESUMEN

Calcium ions (Ca2+) entering cilia through the ciliary voltage-gated calcium channels (CaV) during the action potential causes reversal of the ciliary power stroke and backward swimming in Paramecium tetraurelia. How calcium is returned to the resting level is not yet clear. Our focus is on calcium pumps as a possible mechanism. There are 23 P. tetraurelia genes for calcium pumps that are members of the family of plasma membrane Ca2+ ATPases (PMCAs). They have domains homologous to those found in mammalian PMCAs. Of the 13 pump proteins previously identified in cilia, ptPMCA2a and ptPMCA2b are most abundant in the cilia. We used RNAi to examine which PMCA might be involved in regulating intraciliary Ca2+ after the action potential. RNAi for only ptPMCA2a and ptPMCA2b causes cells to significantly prolong their backward swimming, which indicates that Ca2+ extrusion in the cilia is impaired when these PMCAs are depleted. We used immunoprecipitations (IP) to find that ptPMCA2a and ptPMCA2b are co-immunoprecipitated with the CaV channel α1 subunits that are found only in the cilia. We used iodixanol (OptiPrep) density gradients to show that ptPMCA2a and ptPMCA2b and CaV1c are found in the same density fractions. These results suggest that ptPMCA2a and ptPMCA2b are located in the proximity of ciliary CaV channels.


Asunto(s)
Paramecium , Potenciales de Acción , Animales , Calcio/metabolismo , Canales de Calcio/genética , Cilios/metabolismo , Iones , Paramecium/genética , Paramecium/metabolismo
5.
Am J Physiol Cell Physiol ; 318(2): C304-C327, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693398

RESUMEN

Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.


Asunto(s)
Glutarredoxinas/metabolismo , Glutatión/metabolismo , Enfermedades Pulmonares/metabolismo , Pulmón/metabolismo , Secuencia de Aminoácidos , Animales , Antioxidantes/metabolismo , Cisteína/metabolismo , Disulfuros/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Oxidación-Reducción , Estrés Oxidativo/fisiología
6.
J Immunol ; 201(8): 2377-2384, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30158125

RESUMEN

Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.


Asunto(s)
Leucocitos Mononucleares/inmunología , Proteína Amiloide A Sérica/inmunología , Células Th17/inmunología , Receptor Toll-Like 2/agonistas , Adulto , Animales , Diferenciación Celular , Citocinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Células HEK293 , Humanos , Mediadores de Inflamación/metabolismo , Lipoproteínas/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/genética , Proteína Amiloide A Sérica/genética
7.
FASEB J ; 32(8): 4328-4342, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29553831

RESUMEN

Asbestos exposure is a determinate cause of many diseases, such as mesothelioma, fibrosis, and lung cancer, and poses a major human health hazard. At this time, there are no identified biomarkers to demarcate asbestos exposure before the presentation of disease and symptoms, and there is only limited understanding of the underlying biology that governs asbestos-induced disease. In our study, we used exosomes, 30-140 nm extracellular vesicles, to gain insight into these knowledge gaps. As inhaled asbestos is first encountered by lung epithelial cells and macrophages, we hypothesize that asbestos-exposed cells secrete exosomes with signature proteomic cargo that can alter the gene expression of mesothelial cells, contributing to disease outcomes like mesothelioma. In the present study using lung epithelial cells (BEAS2B) and macrophages (THP-1), we first show that asbestos exposure causes changes in abundance of some proteins in the exosomes secreted from these cells. Furthermore, exposure of human mesothelial cells (HPM3) to these exosomes resulted in gene expression changes related to epithelial-to-mesenchymal transition and other cancer-related genes. This is the first report to indicate that asbestos-exposed cells secrete exosomes with differentially abundant proteins and that those exosomes have a gene-altering effect on mesothelial cells.-Munson, P., Lam, Y.-W., Dragon, J. MacPherson, M., Shukla, A. Exosomes from asbestos-exposed cells modulate gene expression in mesothelial cells.


Asunto(s)
Amianto/toxicidad , Células Epiteliales/fisiología , Epitelio/fisiología , Exosomas/genética , Expresión Génica/genética , Pulmón/fisiología , Carcinógenos/toxicidad , Línea Celular , Células Epiteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Epitelio/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/fisiología
8.
J Dairy Res ; 86(2): 154-161, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31210125

RESUMEN

Grape marc (GPM) is a viticulture by-product that is rich in secondary compounds, including condensed tannins (CT), and is used as a supplement in livestock feeding practices. The aim of this study was to determine whether feeding GPM to lactating dairy cows would alter the milk proteome through changes in nitrogen (N) partitioning. Ten lactating Holstein cows were fed a total mixed ration (TMR) top-dressed with either 1.5 kg dry matter (DM)/cow/day GPM (GPM group; n = 5) or 2.0 kg DM/cow/day of a 50:50 beet pulp: soy hulls mix (control group; n = 5). Characterization of N partitioning and calculation of N partitioning was completed through analysis of plasma urea-N, urine, feces, and milk urea-N. Milk samples were collected for general composition analysis, HPLC quantification of the high abundance milk proteins (including casein isoforms, α-lactalbumin, and ß-lactoglobulin) and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the low abundance protein enriched milk fraction. No differences in DMI, N parameters, or calculated N partitioning were observed across treatments. Dietary treatment did not affect milk yield, milk protein or fat content or yield, or the concentrations of high abundance milk proteins quantified by HPLC analysis. Of the 127 milk proteins that were identified by LC-MS/MS analysis, 16 were affected by treatment, including plasma proteins and proteins associated with the blood-milk barrier, suggesting changes in mammary passage. Immunomodulatory proteins, including butyrophilin subfamily 1 member 1A and serum amyloid A protein, were higher in milk from GPM-fed cows. Heightened abundance of bioactive proteins in milk caused by dietary-induced shifts in mammary passage could be a feasible method to enhance the healthfulness of milk for both the milk-fed calf and human consumer. Additionally, the proteome shifts observed in this trial could provide a starting point for the identification of biomarkers suitable for use as indicators of mammary function.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Proteínas de la Leche/metabolismo , Leche/química , Proteoma , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Lactancia , Proteínas de la Leche/genética , Vitis
9.
J Cell Biochem ; 119(7): 6266-6273, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29663493

RESUMEN

Asbestos-induced diseases like fibrosis and mesothelioma are very aggressive, without any treatment options. These diseases are diagnosed only at the terminal stages due to lack of early stage biomarkers. The recent discovery of exosomes as circulating biomarkers led us to look for exosomal biomarkers of asbestos exposure in mouse blood. In our model, mice were exposed to asbestos as a single bolus dose by oropharyngeal aspiration. Fifty-six days later blood was collected, exosomes were isolated from plasma and characterized and subjected to proteomic analysis using Tandem Mass Tag labeling. We identified many proteins, some of which were more abundant in asbestos exposed mouse serum exosomes, and three selected proteins were validated by immunoblotting. Our study is the first to show that serum exosomal proteomic signatures can reveal some important proteins relevant to asbestos exposure that have the potential to be validated as candidate biomarkers. We hope to extrapolate the positive findings of this study to humans in future studies.


Asunto(s)
Amianto/toxicidad , Proteínas Sanguíneas/metabolismo , Carcinógenos/toxicidad , Exosomas/metabolismo , Administración Oral , Animales , Amianto/administración & dosificación , Proteínas Sanguíneas/efectos de los fármacos , Carcinógenos/administración & dosificación , Exosomas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteómica , Aspiración Respiratoria
10.
Am J Physiol Lung Cell Mol Physiol ; 314(6): L984-L997, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29469614

RESUMEN

Epithelial cells have been suggested as potential drivers of lung fibrosis, although the epithelial-dependent pathways that promote fibrogenesis remain unknown. Extracellular matrix is increasingly recognized as an environment that can drive cellular responses in various pulmonary diseases. In this study, we demonstrate that transforming growth factor-ß1 (TGF-ß1)-stimulated mouse tracheal basal (MTB) cells produce provisional matrix proteins in vitro, which initiate mesenchymal changes in subsequently freshly plated MTB cells via Rho kinase- and c-Jun NH2-terminal kinase (JNK1)-dependent processes. Repopulation of decellularized lung scaffolds, derived from mice with bleomycin-induced fibrosis or from patients with idiopathic pulmonary fibrosis, with wild-type MTB cells resulted in a loss of epithelial gene expression and augmentation of mesenchymal gene expression compared with cells seeded into decellularized normal lungs. In contrast, Jnk1-/- basal cells seeded into fibrotic lung scaffolds retained a robust epithelial expression profile, failed to induce mesenchymal genes, and differentiated into club cell secretory protein-expressing cells. This new paradigm wherein TGF-ß1-induced extracellular matrix derived from MTB cells activates a JNK1-dependent mesenchymal program, which impedes subsequent normal epithelial cell homeostasis, provides a plausible scenario of chronic aberrant epithelial repair, thought to be critical in lung fibrogenesis. This study identifies JNK1 as a possible target for inhibition in settings wherein reepithelialization is desired.


Asunto(s)
Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Fibrosis Pulmonar/metabolismo , Mucosa Respiratoria/patología , Tráquea/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Bleomicina/efectos adversos , Bleomicina/farmacología , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Matriz Extracelular/genética , Matriz Extracelular/patología , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Mucosa Respiratoria/metabolismo , Tráquea/patología , Factor de Crecimiento Transformador beta1/genética
11.
Anal Chem ; 89(12): 6295-6299, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28570047

RESUMEN

Unified analysis of complex reactions of an activity-based probe with proteins in a proteome remains an unsolved challenge. We propose a power expression, rate = kobs[Probe]α, for scaling the progress of proteome-wide reactions and use the scaling factor (0 ≤ α ≤ 1) as an apparent, partial order with respect to the probe to measure the "enzyme-likeness" for a protein in reaction acceleration. Thus, α reports the intrinsic reactivity of the protein with the probe. When α = 0, the involved protein expedites the reaction to the maximal degree; when α = 1, the protein reacts with the probe via an unaccelerated, bimolecular reaction. The selectivity (ß) of the probe reacting with two proteins is calculated as a ratio of conversion factors (kobs values) for corresponding power equations. A combination of α and ß provides a tiered system for quantitatively assessing the probe efficacy; an ideal probe exhibits high reactivity with its protein targets (low in α) and is highly selective (high in ß) in forming the probe-protein adducts. The scaling analysis was demonstrated using proteome-wide reactions of HT-29 cell lysates with a model probe of threonine ß-lactone.


Asunto(s)
Lactonas/química , Sondas Moleculares/química , Proteoma/análisis , Treonina/química , Células HT29 , Humanos , Estructura Molecular
12.
Acta Physiol Plant ; 39(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31736527

RESUMEN

In order to explore the salt-stress responses of two rice varieties, the physiological responses and biochemical responses were investigated using proteomics and classical biochemical methods. The results showed that the seedling growth was inhibited under salt condition in two rice varieties, the seedling growth in the tolerant variety was better than the sensitive variety. The sensitive variety(L7) appeared obvious salt-injury under 3-day salt stress, the tolerant variety (T07339) keep normal growth under 7-day salt stress except that the shoot length was decreased. Through the growth-parameters analysis, most of them in L7 were restrained by salinity and most in T07339 were unaffected. In T07339, the fresh root weight, the content of chlorophyll and the fresh shoot weight were even increased after 7 days of salt stress. A comparison of two-dimensional gel electrophoresis (2-DGE) protein profiles revealed 8 differently expressed proteins. Four proteins were expressed in different pattern between sensitive and tolerant varieties. These results provide novel insights into the investigations of the salt-response proteins that involved in improved salt tolerance.

13.
Proteomics ; 15(11): 1859-67, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25684173

RESUMEN

Aggregatibacter actinomycetemcomitans is an important pathogen in the etiology of human periodontal and systemic diseases. Inactivation of the gene coding for the inner membrane protein, morphogenesis protein C (MorC), results in pleotropic effects pertaining to the membrane structure and function of this bacterium. The role of this protein in membrane biogenesis is unknown. To begin to understand the role of this conserved protein, stable isotope dimethyl labeling in conjunction with MS was used to quantitatively analyze differences in the membrane proteomes of the isogenic mutant and wild-type strain. A total of 613 proteins were quantified and 601 of these proteins were found to be equal in abundance between the two strains. The remaining 12 proteins were found in lesser (10) or greater (2) abundance in the membrane preparation of the mutant strain compared with the wild-type strain. The 12 proteins were ascribed functions associated with protein quality control systems, oxidative stress responses, and protein secretion. The potential relationship between these proteins and the phenotypes of the MorC mutant strain is discussed.


Asunto(s)
Aggregatibacter actinomycetemcomitans/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Eliminación de Gen , Aggregatibacter actinomycetemcomitans/genética , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Membrana Celular/química , Proteínas de la Membrana/metabolismo , Mutación , Proteómica/métodos
14.
Microorganisms ; 12(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38399782

RESUMEN

The emerging lung pathogen Mycobacterium abscessus is understudied for its virulence determinants and molecular targets for diagnosis and therapeutics. Here, we report a comprehensive secretome (600 proteins) of this species, which was identified using a multipronged strategy based on genetic/genomic, proteomic, and bioinformatic approaches. In-solution digested bottom-up proteomics from various growth phases identified a total of 517 proteins, while 2D-GE proteomics identified 33 proteins. A reporter-gene-fusion-based genomic library that was custom-generated in this study enabled the detection of 23 secretory proteins. A genome-wide survey for N-terminal signal sequences using bioinformatic tools (Psortb 2.0 and SignalP 3.0) combined with a strategy of the subtraction of lipoproteins and proteins containing multiple transmembrane domains yielded 116 secretory proteins. A homology search against the M. tuberculosis database identified nine additional secretory protein homologs that lacked a secretory signal sequence. Considering the little overlap (80 proteins) among the different approaches used, this study emphasized the importance of using a multipronged strategy for a comprehensive understanding of the secretome. Notably, the majority of the secreted proteins identified (over 50%) turned out to be "orphans" (those with no known functional homologs). The revelation of these species-specific orphan proteins offers a hitherto unexplored repertoire of potential targets for diagnostic, therapeutic, and vaccine research in this emerging lung pathogen.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38698749

RESUMEN

BACKGROUND: Occupational exposure to industrial Metalworking Fluid (MWF) colonized by Mycobacterium immunogenum (MI) has been associated with immune lung disease hypersensitivity pneumonitis (HP) in machinists. This warrants regular fluid monitoring for early detection of mycobacterial proteins, especially those with antigenic potential. OBJECTIVE: To detect and identify dominant MI proteins and antigens directly from the field-drawn in-use MWF using an integrated immunoproteomic and immunoinformatic approach. METHODS: An MI-positive MWF selected by DNA-based screening of several field-drawn MWF samples were cultured to isolate the colonizing strain and profiled for dominant circulating cell- free (ccf) MI proteins, including antigens using an integrated immunoproteomic (1D- and 2Dgel fractionation of seroreactivity proteins combined with shotgun proteomic analysis using LC-MS/ MS) and immunoinformatic strategy. RESULTS: A new MI strain (MJY-27) was identified. The gel fractionated MI protein bands (1Dgel) or spots (2D-gel) seroreactive with anti-MI sera probes (Rabbit and Patient sera) yielded 86 MI proteins, 29 of which showed peptide abundance. T-cell epitope analysis revealed high (90-100%) binding frequency for HLA-I& II alleles for 13 of the 29 proteins. Their antigenicity analysis revealed the presence of 6 to 37 antigenic determinants. Interestingly, one of the identified candidates corresponded to an experimentally validated strong B- and T-cell antigen (AgD) from our laboratory culture-based studies. CONCLUSION: This first report on dominant proteins, including putative antigens of M. immunogenum prevalent in field in-use MWF, is a significant step towards the overall goal of developing fluid monitoring for exposure and disease risk assessment for HP development in machining environments.

16.
Appl Environ Microbiol ; 79(8): 2692-702, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23416995

RESUMEN

Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Oxigenasas de Función Mixta/metabolismo , Phanerochaete/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Alcanos/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Hidrocarburos/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Petróleo/metabolismo , Contaminación por Petróleo , Phanerochaete/enzimología , Hidrocarburos Policíclicos Aromáticos/química , Alineación de Secuencia , Especificidad por Sustrato
17.
Nat Commun ; 14(1): 4550, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507364

RESUMEN

Protein-S-glutathionylation is a post-translational modification involving the conjugation of glutathione to protein thiols, which can modulate the activity and structure of key cellular proteins. Glutaredoxins (GLRX) are oxidoreductases that regulate this process by performing deglutathionylation. However, GLRX has five cysteines that are potentially vulnerable to oxidative modification, which is associated with GLRX aggregation and loss of activity. To date, GLRX cysteines that are oxidatively modified and their relative susceptibilities remain unknown. We utilized molecular modeling approaches, activity assays using recombinant GLRX, coupled with site-directed mutagenesis of each cysteine both individually and in combination to address the oxidizibility of GLRX cysteines. These approaches reveal that C8 and C83 are targets for S-glutathionylation and oxidation by hydrogen peroxide in vitro. In silico modeling and experimental validation confirm a prominent role of C8 for dimer formation and aggregation. Lastly, combinatorial mutation of C8, C26, and C83 results in increased activity of GLRX and resistance to oxidative inactivation and aggregation. Results from these integrated computational and experimental studies provide insights into the relative oxidizability of GLRX's cysteines and have implications for the use of GLRX as a therapeutic in settings of dysregulated protein glutathionylation.


Asunto(s)
Cisteína , Glutarredoxinas , Animales , Cisteína/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Mamíferos/metabolismo , Oxidación-Reducción , Proteínas/metabolismo
18.
Biochemistry ; 51(48): 9689-97, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23106339

RESUMEN

The increased mortality in prostate cancer is usually the result of metastatic progression of the disease from the organ-confined location. Among the major events in this progression cascade are enhanced cell migration and loss of adhesion. Moreover, elevated levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) found within the tumor microenvironment are hallmarks of progression of this cancer. To understand the role of nitrosative stress in prostate cancer progression, we investigated the effects of NO and iNOS on prostate cancer cell migration and adhesion. Our results indicate that ectopic expression of iNOS in prostate cancer cells increased the extent of cell migration, which could be blocked by selective ITGα6 blocking antibody or iNOS inhibitors. Furthermore, iNOS was found to cause S-nitrosylation of ITGα6 at Cys86 in prostate cancer cells. By comparing the activities of wild-type ITGα6 and a Cys86 mutant, we showed that treatment of prostate cancer cells with NO increased the level of ITGα6 heterodimerization with ITGß1 but not with ITGß4. Finally, S-nitrosylation of ITGα6 weakened its binding to laminin-ß1 and weakened the adhesion of prostate cancer cells to laminin-1. In conclusion, S-nitrosylation of ITGα6 increased the extent of prostate cancer cell migration, which could be a potential mechanism of NO- and iNOS-induced enhancement of prostate cancer metastasis.


Asunto(s)
Movimiento Celular , Integrina alfa6/metabolismo , Integrina beta1/metabolismo , Laminina/metabolismo , Neoplasias de la Próstata/patología , Adhesión Celular , Línea Celular Tumoral , Humanos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Neoplasias de la Próstata/metabolismo
19.
Biochem Biophys Res Commun ; 399(4): 492-7, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20674550

RESUMEN

Fungi, particularly the white rot basidiomycetes, have an extraordinary capability to degrade and/or mineralize (to CO(2)) the recalcitrant fused-ring high molecular weight (4 aromatic-rings) polycyclic aromatic hydrocarbons (HMW PAHs). Despite over 30years of research demonstrating involvement of P450 monooxygenation reactions in fungal metabolism of HMW PAHs, specific P450 monooxygenases responsible for oxidation of these compounds are not yet known. Here we report the first comprehensive identification and functional characterization of P450 monooxygenases capable of oxidizing different ring-size PAHs in the model white rot fungus Phanerochaete chrysosporium using a successful genome-to-function strategy. In a genome-wide P450 microarray screen, we identified six PAH-responsive P450 genes (Pc-pah1-Pc-pah6) inducible by PAHs of varying ring size, namely naphthalene, phenanthrene, pyrene, and benzo(a)pyrene (BaP). Using a co-expression strategy, cDNAs of the six Pc-Pah P450s were cloned and expressed in Pichia pastoris in conjunction with the homologous P450 oxidoreductase (Pc-POR). Each of the six recombinant P450 monooxygenases showed PAH-oxidizing activity albeit with varying substrate specificity towards PAHs (3-5 rings). All six P450s oxidized pyrene (4-ring) into two monohydroxylated products. Pc-Pah1 and Pc-Pah3 oxidized BaP (5-ring) to 3-hydroxyBaP whereas Pc-Pah4 and Pc-Pah6 oxidized phenanthrene (3-ring) to 3-, 4-, and 9-phenanthrol. These PAH-oxidizing P450s (493-547 aa) are structurally diverse and novel considering their low overall homology (12-23%) to mammalian counterparts. To our knowledge, this is the first report on specific fungal P450 monooxygenases with catalytic activity toward environmentally persistent and highly toxic HMW PAHs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Oxigenasas de Función Mixta/metabolismo , Phanerochaete/enzimología , Hidrocarburos Policíclicos Aromáticos/metabolismo , Biodegradación Ambiental , Catálisis , Sistema Enzimático del Citocromo P-450/genética , Genoma Fúngico , Estudio de Asociación del Genoma Completo , Oxigenasas de Función Mixta/genética , Oxidación-Reducción , Phanerochaete/genética , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
20.
mBio ; 11(4)2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753489

RESUMEN

Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.


Asunto(s)
Extensiones de la Superficie Celular/fisiología , Entamoeba histolytica/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Protozoarias/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Entamoeba histolytica/genética , Movimiento , Fagocitosis , Fosfoproteínas/genética , Fosforilación , Proteómica , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA