Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 109(2): 444-457, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37534543

RESUMEN

Warm autoimmune hemolytic anemia (wAIHA) is a rare acquired autoimmune disease mediated by antibodies targeting red blood cells. The involvement of CD4 T-helper cells has been scarcely explored, with most findings extrapolated from animal models. Here, we performed quantification of both effector T lymphocytes (Teff) and regulatory T cells (Treg), associated with functional and transcriptomic analyses of Treg in human wAIHA. We observed a shift of Teff toward a Th17 polarization concordant with an increase in serum interleukin-17 concentration that correlates with red blood cell destruction parameters, namely lactate dehydrogenase and bilirubin levels. A decrease in circulating Treg, notably effector Treg, associated with a functional deficiency, as represented by their decrease capability to inhibit Teff proliferation, were also observed. Treg deficiency was associated with a reduced expression of Foxp3, the master transcription factor known to maintain the Treg phenotype stability and suppressive functions. Transcriptomic profiling of Treg revealed activation of the tumor necrosis facto (TNF)-α pathway, which was linked to increased serum TNF-α concentrations that were twice as high as in controls. Treg transcriptomic profiling also suggested that post-translational mechanisms possibly accounted for Foxp3 downregulation and Treg dysfunctions. Since TNF-α participates in the rupture of immune tolerance during wAIHA, its inhibition could be of interest. To this end, the effects of fostamatinib, a SYK inhibitor, were investigated in vitro, and we showed that besides the inhibition of erythrocyte phagocytosis by monocytes, fostamatinib is also able to dampen TNF-α production, thus appearing as a promising multitargeting therapy in wAIHA (clinicaltrials gov. Identifier: NCT02158195).


Asunto(s)
Aminopiridinas , Anemia Hemolítica Autoinmune , Morfolinas , Pirimidinas , Linfocitos T Reguladores , Animales , Humanos , Factor de Necrosis Tumoral alfa , Factores de Transcripción Forkhead/metabolismo , Células Th17
2.
Blood ; 137(17): 2326-2336, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33545713

RESUMEN

Immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is caused by mutations in forkhead box P3 (FOXP3), which lead to the loss of function of regulatory T cells (Tregs) and the development of autoimmune manifestations early in life. The selective induction of a Treg program in autologous CD4+ T cells by FOXP3 gene transfer is a promising approach for curing IPEX. We have established a novel in vivo assay of Treg functionality, based on adoptive transfer of these cells into scurfy mice (an animal model of IPEX) and a combination of cyclophosphamide (Cy) conditioning and interleukin-2 (IL-2) treatment. This model highlighted the possibility of rescuing scurfy disease after the latter's onset. By using this in vivo model and an optimized lentiviral vector expressing human Foxp3 and, as a reporter, a truncated form of the low-affinity nerve growth factor receptor (ΔLNGFR), we demonstrated that the adoptive transfer of FOXP3-transduced scurfy CD4+ T cells enabled the long-term rescue of scurfy autoimmune disease. The efficiency was similar to that seen with wild-type Tregs. After in vivo expansion, the converted CD4FOXP3 cells recapitulated the transcriptomic core signature for Tregs. These findings demonstrate that FOXP3 expression converts CD4+ T cells into functional Tregs capable of controlling severe autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes/prevención & control , Linfocitos T CD4-Positivos/inmunología , Ciclofosfamida/farmacología , Factores de Transcripción Forkhead/genética , Enfermedades Genéticas Ligadas al Cromosoma X/prevención & control , Interleucina-2/farmacología , Linfocitos T Reguladores/inmunología , Animales , Antineoplásicos/farmacología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos T CD4-Positivos/efectos de los fármacos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/inmunología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Inmunosupresores/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/efectos de los fármacos
3.
Kidney Int ; 101(4): 692-710, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34915041

RESUMEN

Detection of mismatched human leukocyte antigens by adaptive immune cells is considered as the main cause of transplant rejection, leading to either T-cell mediated rejection or antibody-mediated rejection. This canonical view guided the successful development of immunosuppressive therapies and shaped the diagnostic Banff classification for kidney transplant rejection that is used in clinics worldwide. However, several observations have recently emerged that question this dichotomization between T-cell mediated rejection and antibody-mediated rejection, related to heterogeneity in the serology, histology, and prognosis of the rejection phenotypes. In parallel, novel insights were obtained concerning the dynamics of donor-specific anti-human leukocyte antigen antibodies, the immunogenicity of donor-recipient non-human leukocyte antigen mismatches, and the autoreactivity against self-antigens. Moreover, the potential of innate allorecognition was uncovered, as exemplified by natural killer cell-mediated microvascular inflammation through missing self, and by the emerging evidence on monocyte-driven allorecognition. In this review, we highlight the gaps in the current classification of rejection, provide an overview of the expanding insights into the mechanisms of allorecognition, and critically appraise how these could improve our understanding and clinical approach to kidney transplant rejection. We argue that consideration of the complex interplay of various allorecognition mechanisms can foster a more integrated view of kidney transplant rejection and can lead to improved risk stratification, targeted therapies, and better outcome after kidney transplantation.


Asunto(s)
Trasplante de Riñón , Anticuerpos , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Antígenos HLA , Humanos , Terapia de Inmunosupresión , Trasplante de Riñón/efectos adversos , Complicaciones Posoperatorias , Donantes de Tejidos
4.
Kidney Int ; 102(1): 183-195, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526671

RESUMEN

Kidney transplant injury processes are associated with molecular changes in kidney tissue, primarily related to immune cell activation and infiltration. How these processes are reflected in the circulating immune cells, whose activation is targeted by strong immunosuppressants, is poorly understood. To study this, we analyzed the molecular alterations in 384 peripheral blood samples from four European transplant centers, taken at the time of a kidney allograft biopsy, selected for their phenotype, using RNA-sequencing. In peripheral blood, differentially expressed genes in 136 rejection and 248 no rejection samples demonstrated upregulation of glucocorticoid receptor and nucleotide oligomerization domain-like receptor signaling pathways. Pathways enriched in antibody-mediated rejection (ABMR) were strongly immune-specific, whereas pathways enriched in T cell-mediated rejection were less immune related. In polyomavirus infection, upregulation of mitochondrial dysfunction and interferon signaling pathways was seen. Next, we integrated the blood results with transcriptomics of 224 kidney allograft biopsies which showed consistently upregulated genes per phenotype in both blood and biopsy. In single-cell RNASeq (scRNASeq) analysis of seven kidney allograft biopsies, the consistently overexpressed genes in ABMR were mostly expressed by infiltrating leukocytes in the allograft. Similarly, in peripheral blood scRNASeq analysis, these genes were overexpressed in ABMR in immune cell subtypes. Furthermore, overexpression of these genes in ABMR was confirmed in independent cohorts in blood and biopsy. Thus, our results highlight the immune activation pathways in peripheral blood leukocytes at the time of kidney allograft pathology, despite the use of current strong immunosuppressants, and provide a framework for future therapeutic interventions.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Aloinjertos , Anticuerpos , Biopsia , Inmunosupresores , Riñón/patología , Trasplante de Riñón/efectos adversos , Trasplante de Riñón/métodos , Transcriptoma
5.
Am J Kidney Dis ; 80(6): 718-729.e1, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35690154

RESUMEN

RATIONALE & OBJECTIVE: The relationship between human leukocyte antigen (HLA) molecular mismatches and T-cell-mediated rejection (TCMR) is unknown. We investigated the associations between the different donor HLA-derived T-cell targets and the occurrence of TCMR and borderline histologic changes suggestive of TCMR after kidney transplantation. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: All kidney transplant recipients at a single center between 2004 and 2013 with available biopsy data and a DNA sample for high-resolution HLA donor/recipient typing (N = 893). EXPOSURE: Scores calculated by the HLA matching algorithm PIRCHE-II and HLA eplet mismatches. OUTCOME: TCMR, borderline changes suggestive of TCMR, and allograft failure. ANALYTICAL APPROACH: Multivariable cause-specific hazards models were fit to characterize the association between HLA epitopes targets and study outcomes. RESULTS: We found 277 patients developed TCMR, and 134 developed only borderline changes suggestive of TCMR on at least 1 biopsy. In multivariable analyses, only the PIRCHE-II scores for HLA-DRB1 and HLA-DQB1 were independently associated with the occurrence of TCMR and with allograft failure; this was not the case for HLA class I molecules. If restricted to rejection episodes within the first 3 months after transplantation, only the T-cell epitope targets originating from the donor's HLA-DRB1 and HLA-DQB1, but not class I molecules, were associated with the early acute TCMR. Also, the median PIRCHE-II score for HLA class II was statistically different between the patients with TCMR compared to the patients without TCMR (129 [IQR, 60-240] vs 201 [IQR, 96-298], respectively; P < 0.0001). These differences were not observed for class I PIRCHE-II scores. LIMITATIONS: Observational clinical data and residual confounding. CONCLUSIONS: In the absence of HLA-DSA, HLA class II but not class I mismatches are associated with early episodes of acute TCMR and allograft failure. This suggests that current immunosuppressive therapies are largely able to abort the most deleterious HLA class I-directed alloimmune processes; however, alloresponses against HLA-DRB1 and HLA-DQB1 molecular mismatches remain insufficiently suppressed. PLAIN-LANGUAGE SUMMARY: Genetic differences in the human leukocyte antigen (HLA) complex between kidney transplant donors and recipients play a central role in T-cell-mediated rejection (TCMR), which can lead to failure of the transplanted kidney. Evaluating this genetic disparity (mismatch) in the HLA complex at the molecular (epitope) level could contribute to better prediction of the immune response to the donor organ posttransplantation. We investigated the associations of the different donor HLA-derived T-cell epitope targets and scores obtained from virtual crossmatch algorithms with the occurrence of TCMR, borderline TCMR, and graft failure after kidney transplantation after taking into account the influence of donor-specific anti-HLA antibodies. This study illustrates the greater importance of the molecular mismatches in class II molecules compared to class I HLA molecules.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Epítopos de Linfocito T , Rechazo de Injerto/epidemiología , Supervivencia de Injerto , Estudios Retrospectivos , Cadenas HLA-DRB1 , Linfocitos T , Antígenos HLA/genética , Prueba de Histocompatibilidad
6.
J Am Soc Nephrol ; 32(12): 3231-3251, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35167486

RESUMEN

BACKGROUND: After kidney transplantation, donor-specific antibodies against human leukocyte antigen donor-specific antibodies (HLA-DSAs) drive antibody-mediated rejection (ABMR) and are associated with poor transplant outcomes. However, ABMR histology (ABMRh) is increasingly reported in kidney transplant recipients (KTRs) without HLA-DSAs, highlighting the emerging role of non-HLA antibodies (Abs). METHODS: W e designed a non-HLA Ab detection immunoassay (NHADIA) using HLA class I and II-deficient glomerular endothelial cells (CiGEnCΔHLA) that had been previously generated through CRISPR/Cas9-induced B2M and CIITA gene disruption. Flow cytometry assessed the reactivity to non-HLA antigens of pretransplantation serum samples from 389 consecutive KTRs. The intensity of the signal observed with the NHADIA was associated with post-transplant graft histology assessed in 951 adequate biopsy specimens. RESULTS: W e sequentially applied CRISPR/Cas9 to delete the B2M and CIITA genes to obtain a CiGEnCΔHLA clone. CiGEnCΔHLA cells remained indistinguishable from the parental cell line, CiGEnC, in terms of morphology and phenotype. Previous transplantation was the main determinant of the pretransplantation NHADIA result (P<0.001). Stratification of 3-month allograft biopsy specimens (n=298) according to pretransplantation NHADIA tertiles demonstrated that higher levels of non-HLA Abs positively correlated with increased glomerulitis (P=0.002), microvascular inflammation (P=0.003), and ABMRh (P=0.03). A pretransplantation NHADIA threshold of 1.87 strongly discriminated the KTRs with the highest risk of ABMRh (P=0.005, log-rank test). A multivariate Cox model confirmed that NHADIA status and HLA-DSAs were independent, yet synergistic, predictors of ABMRh. CONCLUSION: The NHADIA identifies non-HLA Abs and strongly predicts graft endothelial injury independent of HLA-DSAs.


Asunto(s)
Sistemas CRISPR-Cas/genética , Rechazo de Injerto/etiología , Antígenos HLA/inmunología , Isoanticuerpos/inmunología , Glomérulos Renales/inmunología , Trasplante de Riñón/efectos adversos , Donantes de Tejidos , Adulto , Anciano , Células Cultivadas , Células Endoteliales/inmunología , Femenino , Eliminación de Gen , Antígenos HLA/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas Nucleares/genética , Reoperación , Estudios Retrospectivos , Transactivadores/genética , Microglobulina beta-2/genética
7.
Curr Opin Organ Transplant ; 26(1): 10-16, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278152

RESUMEN

PURPOSE OF REVIEW: In kidney transplantation, microRNAs (miRNAs) have been extensively studied over the past decade, and panels of differentially expressed miRNAs have been identified from various body fluids/tissues, including blood, plasma, urine, or allograft biopsies, and in various conditions, such as acute T-cell-mediated and antibody-mediated rejections, chronic allograft rejection, interstitial fibrosis and tubular atrophy, acute tubular necrosis or BKV nephropathy. RECENT FINDINGS: This review outlines our current knowledge regarding the complexity of miRNA regulation in fine-tuning expression of two-thirds of the human genome and the potential of miRNAs as biomarkers, based on an increasing number of case--control studies with, however, no evidence of short-term clinical development. Instead, a progressive change in study objectives is reported, with the most recent literature using miRNA-targeted genes as entry points for studying disease pathways. SUMMARY: Our nascent understanding of their presumed roles in alloimmunity suggests that miRNAs are key regulators in many allograft injuries. Future directions should investigate how the integration of miRNAs with other layers of molecular data, such as genomic, transcriptomic, or proteomic data, could help to characterize the cellular interactions involved in allograft rejection and whether miRNA-based therapy could be of relevance for transplant medicine.


Asunto(s)
Rechazo de Injerto/metabolismo , Trasplante de Riñón , MicroARNs/metabolismo , Biomarcadores/metabolismo , Biopsia , Perfilación de la Expresión Génica , Humanos , MicroARNs/genética , Proteómica , Linfocitos T , Trasplante Homólogo
8.
Am J Transplant ; 20(4): 942-953, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31715060

RESUMEN

The exact composition of leukocyte infiltration during kidney allograft rejection is difficult to comprehend and visualize on the same biopsy slide. Using an innovative technology of multiplex immunofluorescence (mIF), we were able to detect simultaneously NK cells, macrophages, and T cells and to determine their intra- or extravascular localization using an endothelial marker. Twenty antibody-mediated rejection (ABMR), 20 T cell-mediated rejection (TCMR), and five normal biopsies were labeled, with automatic leukocyte quantification and localization. This method was compared to a classic NKp46 immunohistochemistry (IHC) with manual quantification and to mRNA quantification. mIF automatic quantification was strongly correlated to IHC (r = .91, P < .001) and to mRNA expression levels (r > .46, P < .021). T cells and macrophages were the 2 predominant populations involved in rejection (48.0 ± 4.4% and 49.3 ± 4.4%, respectively, in ABMR; 51.8 ± 6.0% and 45.3 ± 5.8% in TCMR). NK cells constituted a rare population in both ABMR (2.7 ± 0.7%) and TCMR (2.9 ± 0.6%). The intravascular compartment was mainly composed of T cells, including during ABMR, in peritubular and glomerular capillaries. However, NK cell and macrophage densities were significantly higher during ABMR in glomerular and peritubular capillaries. To conclude, this study demonstrates the feasibility and utility of mIF imaging to study and better understand the kidney allograft rejection process.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Aloinjertos , Técnica del Anticuerpo Fluorescente , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Riñón , Trasplante de Riñón/efectos adversos
9.
Am J Transplant ; 20(8): 2243-2253, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32065452

RESUMEN

Acute graft-versus-host disease (GVHD) is a rare but frequently lethal complication after solid organ transplantation. GVHD occurs in unduly immunocompromised hosts but requires the escalation of immunosuppression, which does not discriminate between host and donor cells. In contrast, donor-targeted therapy would ideally mitigate graft-versus-host reactivity while sparing recipient immune functions. We report two children with end-stage renal disease and severe primary immune deficiency (Schimke syndrome) who developed severe steroid-resistant acute GVHD along with full and sustained donor T cell chimerism after isolated kidney transplantation. Facing a therapeutic dead end, we used a novel strategy based on the adoptive transfer of anti-HLA donor-specific antibodies (DSAs) through the transfusion of highly selected plasma. After approval by the appropriate regulatory authority, an urgent nationwide search was launched among more than 3800 registered blood donors with known anti-HLA sensitization. Adoptively transferred DSAs bound to and selectively depleted circulating donor T cells. The administration of DSA-rich plasma was well tolerated and notably did not induce antibody-mediated rejection of the renal allografts. Acute GVHD symptoms promptly resolved in one child. This report provides a proof of concept for a highly targeted novel therapeutic approach for solid organ transplantation-associated GVHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Riñón , Niño , Enfermedad Injerto contra Huésped/etiología , Humanos , Inmunización Pasiva , Trasplante de Riñón/efectos adversos , Esteroides , Acondicionamiento Pretrasplante
11.
J Am Soc Nephrol ; 30(4): 692-709, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30850439

RESUMEN

BACKGROUND: Although anti-HLA antibodies (Abs) cause most antibody-mediated rejections of renal allografts, non-anti-HLA Abs have also been postulated to contribute. A better understanding of such Abs in rejection is needed. METHODS: We conducted a nationwide study to identify kidney transplant recipients without anti-HLA donor-specific Abs who experienced acute graft dysfunction within 3 months after transplantation and showed evidence of microvascular injury, called acute microvascular rejection (AMVR). We developed a crossmatch assay to assess serum reactivity to human microvascular endothelial cells, and used a combination of transcriptomic and proteomic approaches to identify non-HLA Abs. RESULTS: We identified a highly selected cohort of 38 patients with early acute AMVR. Biopsy specimens revealed intense microvascular inflammation and the presence of vasculitis (in 60.5%), interstitial hemorrhages (31.6%), or thrombotic microangiopathy (15.8%). Serum samples collected at the time of transplant showed that previously proposed anti-endothelial cell Abs-angiotensin type 1 receptor (AT1R), endothelin-1 type A and natural polyreactive Abs-did not increase significantly among patients with AMVR compared with a control group of stable kidney transplant recipients. However, 26% of the tested AMVR samples were positive for AT1R Abs when a threshold of 10 IU/ml was used. The crossmatch assay identified a common IgG response that was specifically directed against constitutively expressed antigens of microvascular glomerular cells in patients with AMVR. Transcriptomic and proteomic analyses identified new targets of non-HLA Abs, with little redundancy among individuals. CONCLUSIONS: Our findings indicate that preformed IgG Abs targeting non-HLA antigens expressed on glomerular endothelial cells are associated with early AMVR, and that in vitro cell-based assays are needed to improve risk assessments before transplant.


Asunto(s)
Rechazo de Injerto/inmunología , Hemorragia/inmunología , Inmunoglobulina G/sangre , Receptor de Angiotensina Tipo 1/inmunología , Microangiopatías Trombóticas/inmunología , Vasculitis/inmunología , Enfermedad Aguda , Adulto , Anciano , Células Endoteliales/inmunología , Endotelina-1/inmunología , Femenino , Rechazo de Injerto/patología , Rechazo de Injerto/fisiopatología , Hemorragia/patología , Humanos , Glomérulos Renales/patología , Trasplante de Riñón/efectos adversos , Masculino , Microvasos/patología , Persona de Mediana Edad , Microangiopatías Trombóticas/patología , Factores de Tiempo , Vasculitis/patología
12.
Blood ; 128(23): 2694-2707, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27702801

RESUMEN

Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.


Asunto(s)
Antineoplásicos/farmacología , Colesterol/metabolismo , Células Dendríticas/metabolismo , Receptores X del Hígado/agonistas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Dendríticas/patología , Femenino , Humanos , Interleucina-3/metabolismo , Receptores X del Hígado/metabolismo , Masculino , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT5/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Allergy Clin Immunol ; 135(6): 1614-24.e4, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25630940

RESUMEN

BACKGROUND: Adoptive transfer of immunosuppressive cells has emerged as a promising strategy for the treatment of immune-mediated disorders. However, only a limited number of such cells can be isolated from in vivo specimens. Therefore efficient ex vivo differentiation and expansion procedures are critically needed to produce a clinically relevant amount of these suppressive cells. OBJECTIVE: We sought to develop a novel, clinically relevant, and feasible approach to generate ex vivo a subpopulation of human suppressor cells of monocytic origin, referred to as human monocyte-derived suppressive cells (HuMoSCs), which can be used as an efficient therapeutic tool to treat inflammatory disorders. METHODS: HuMoSCs were generated from human monocytes cultured for 7 days with GM-CSF and IL-6. The immune-regulatory properties of HuMoSCs were investigated in vitro and in vivo. The therapeutic efficacy of HuMoSCs was evaluated by using a graft-versus-host disease (GvHD) model of humanized mice (NOD/SCID/IL-2Rγc(-/-) [NSG] mice). RESULTS: CD33+ HuMoSCs are highly potent at inhibiting the proliferation and activation of autologous and allogeneic effector T lymphocytes in vitro and in vivo. The suppressive activity of these cells depends on signal transducer and activator of transcription 3 activation. Of therapeutic relevance, HuMoSCs induce long-lasting memory forkhead box protein 3-positive CD8+ regulatory T lymphocytes and significantly reduce GvHD induced with human PBMCs in NSG mice. CONCLUSION: Ex vivo-generated HuMoSCs inhibit effector T lymphocytes, promote the expansion of immunosuppressive forkhead box protein 3-positive CD8+ regulatory T cells, and can be used as an efficient therapeutic tool to prevent GvHD.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Monocitos/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Terapia de Inmunosupresión , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Interleucina-6/farmacología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/trasplante , Cultivo Primario de Células , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Trasplante Heterólogo
15.
Haematologica ; 100(2): 223-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25381130

RESUMEN

Blastic plasmacytoid dendritic cell neoplasm is an aggressive malignancy derived from plasmacytoid dendritic cells. There is currently no accepted standard of care for treating this neoplasm, and therapeutic strategies have never been prospectively evaluated. Since blastic plasmacytoid dendritic cell neoplasm cells express high levels of interleukin-3 receptor α chain (IL3-Rα or CD123), antitumor effects of the interleukin-3 receptor-targeted drug SL-401 against blastic plasmacytoid dendritic cell neoplasm were evaluated in vitro and in vivo. The cytotoxicity of SL-401 was assessed in patient-derived blastic plasmacytoid dendritic cell neoplasm cell lines (CAL-1 and GEN2.2) and in primary blastic plasmacytoid dendritic cell neoplasm cells isolated from 12 patients using flow cytometry and an in vitro cytotoxicity assay. The cytotoxic effects of SL-401 were compared to those of several relevant cytotoxic agents. SL-401 exhibited a robust cytotoxicity against blastic plasmacytoid dendritic cell neoplasm cells in a dose-dependent manner. Additionally, the cytotoxic effects of SL-401 were observed at substantially lower concentrations than those achieved in clinical trials to date. Survival of mice inoculated with a blastic plasmacytoid dendritic cell neoplasm cell line and treated with a single cycle of SL-401 was significantly longer than that of untreated controls (median survival, 58 versus 17 days, P<0.001). These findings indicate that blastic plasmacytoid dendritic cell neoplasm cells are highly sensitive to SL-401, and support further evaluation of SL-401 in patients suffering from blastic plasmacytoid dendritic cell neoplasm.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Células Dendríticas/patología , Neoplasias Hematológicas/patología , Subunidad alfa del Receptor de Interleucina-3/antagonistas & inhibidores , Trastornos Mieloproliferativos/patología , Plasmacitoma/patología , Proteínas Recombinantes de Fusión/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Biomarcadores de Tumor/genética , Western Blotting , Proliferación Celular , Células Dendríticas/metabolismo , Femenino , Citometría de Flujo , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Técnicas In Vitro , Subunidad alfa del Receptor de Interleucina-3/genética , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/terapia , Plasmacitoma/metabolismo , Plasmacitoma/terapia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cytotherapy ; 17(7): 948-55, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25813681

RESUMEN

BACKGROUND AIMS: This study aimed to characterize the immune effectors contained in the grafts from donor mice mobilized by granulocyte colony-stimulating factor (G-CSF) and plerixafor and to evaluate their impact on the development of acute graft-versus-host-disease (aGVHD). METHODS: Mobilization was done with G-CSF alone or G-CSF plus plerixafor (G+P). RESULTS: In grafts collected after G+P mobilization, we observed a significantly higher proportion of c-kit(+)Sca-1(+) hematopoietic stem cells compared with G-CSF. A significant increase in the percentage of plasmacytoid dendritic cells was detected in the G+P graft compared with G-CSF graft. We also studied the ability of stem cell grafts mobilized with G+P to induce GVHD in a mouse model. We observed higher mortality (P < 0.001) associated with increased aGVHD clinical score (P < 0.0001) as well as higher pathology score in the intestine of mice receiving G+P as compared with G-CSF grafts (P < 0.001). Moreover, the exacerbated aGVHD severity was associated with upregulation of CCR6 expression on both CD4(+) and CD8(+) T cells from the G+P grafts, as well as on T cells from mice transplanted with G+P grafts. CONCLUSIONS: In conclusion, we showed that grafts mobilized with G+P exhibited functional features different from those mobilized with G-CSF alone, which increase the severity of aGVHD in the recipients.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Factor Estimulante de Colonias de Granulocitos/farmacología , Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Compuestos Heterocíclicos/farmacología , Animales , Antígenos Ly/metabolismo , Bencilaminas , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Ciclamas , Células Dendríticas/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/terapia , Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores CCR6/metabolismo , Bazo/citología
17.
Science ; 383(6685): eadd6371, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386758

RESUMEN

The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Riñón , Insuficiencia Renal Crónica , Factor de Transcripción SOX9 , Animales , Humanos , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Células Epiteliales , Fibrosis , Riñón/patología , Regeneración , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Factor de Transcripción SOX9/genética , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo
18.
Transplantation ; 107(5): 1089-1101, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398319

RESUMEN

BACKGROUND: Increasing evidence suggest that microRNAs are involved in the physiopathology of acute or chronic renal disease. In kidney transplantation, as key regulators of cellular homeostasis, microRNAs may be involved in the regulation of immune cell function and the allograft response. Here, we investigated the change in circulating microRNA expression profile and their involvement in the profound transcriptional changes associated with antibody-mediated rejection (AMR). METHODS: Blood samples were collected at the time of the 710 kidney allograft biopsies at 4 European transplant centers. Messenger RNA and microRNA profiling analyses were performed in a discovery-to-validation study within 3 independent cohorts encompassing N = 126, N = 135, and N = 416 patients, respectively. RESULTS: Compared with samples with no AMR, 14 microRNAs were significantly decreased in AMR samples. Among them, expression levels of microRNA-15b, microRNA-106a, and microRNA-374a gradually decreased with the severity of AMR lesions. From their in silico-predicted target genes, a high proportion proved to be significantly upregulated in the paired transcriptomic analysis. Gene ontology analyses of microRNA-15b/-106a/-374a suggested enrichment in myeloid-related pathways, which was further refined by in silico and ex vivo transcriptomic analyses, showing a specific origin from classical CD14 + monocytes. Finally, human CD14 + monocytes were subjected to transduction by antago-microRNAs to mimic AMR pathology. MicroRNA-15b/-106a/-374a impairment resulted in cellular activation with an increased expression of CD69, CRIM1, IPO7, and CAAP1, direct and common targets of the 3 microRNAs. CONCLUSIONS: Together, our data provide new insights into circulating microRNAs as markers and key players in AMR, and they suggest monocyte involvement in this process.


Asunto(s)
Trasplante de Riñón , MicroARNs , Humanos , Trasplante de Riñón/efectos adversos , Monocitos/metabolismo , MicroARNs/metabolismo , Trasplante Homólogo , Perfilación de la Expresión Génica/métodos , Anticuerpos , Rechazo de Injerto
19.
Transplantation ; 107(7): 1580-1592, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728359

RESUMEN

BACKGROUND: Potentially harmful nonhuman leukocyte antigen antibodies have been identified in renal transplantation, including natural immunoglobulin G antibodies (Nabs) reactive to varied antigenic structures, including apoptotic cells. METHODS: In this retrospective, multicenter study, we assessed Nabs by reactivity to apoptotic cells in sera collected from 980 kidney transplant recipients across 4 centers to determine their association with graft outcomes. RESULTS: Elevated pretransplant Nabs were associated with graft loss (hazard ratio [HR] 2.71; 95% confidence interval [CI], 1.15-6.39; P = 0.0232), the composite endpoint of graft loss or severe graft dysfunction (HR 2.40; 95% CI, 1.13-5.10; P = 0.0232), and T cell-mediated rejection (odds ratio [OR] 1.77; 95% CI, 1.07-3.02; P = 0.0310). High pretransplant Nabs together with donor-specific antibodies (DSAs) were associated with increased risk of composite outcomes (HR 6.31; 95% CI, 1.81-22.0; P = 0.0039). In patients with high pretransplant Nabs, the subsequent development of posttransplant Nabs was associated with both T cell-mediated rejection (OR 3.64; 95% CI, 1.61-8.36; P = 0.0021) and mixed rejection (OR 3.10; 95% CI, 1.02-9.75; P = 0.0473). Finally, elevated pre- and posttransplant Nabs combined with DSAs were associated with increased risk of composite outcomes (HR 3.97; 95% CI, 1.51-10.43; P = 0.0052) and T cell-mediated rejection (OR 7.28; 95% CI, 2.16-25.96; P = 0.0016). CONCLUSIONS: The presence of pre- and posttransplant Nabs, together with DSAs, was associated with increased risk of poor graft outcomes and rejection after renal transplantation.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos , Trasplante Homólogo , Inmunoglobulina G , Antígenos HLA , Aloinjertos , Rechazo de Injerto , Supervivencia de Injerto
20.
Nat Commun ; 14(1): 4359, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468466

RESUMEN

Rejection remains the main cause of premature graft loss after kidney transplantation, despite the use of potent immunosuppression. This highlights the need to better understand the composition and the cell-to-cell interactions of the alloreactive inflammatory infiltrate. Here, we performed droplet-based single-cell RNA sequencing of 35,152 transcriptomes from 16 kidney transplant biopsies with varying phenotypes and severities of rejection and without rejection, and identified cell-type specific gene expression signatures for deconvolution of bulk tissue. A specific association was identified between recipient-derived FCGR3A+ monocytes, FCGR3A+ NK cells and the severity of intragraft inflammation. Activated FCGR3A+ monocytes overexpressed CD47 and LILR genes and increased paracrine signaling pathways promoting T cell infiltration. FCGR3A+ NK cells overexpressed FCRL3, suggesting that antibody-dependent cytotoxicity is a central mechanism of NK-cell mediated graft injury. Multiplexed immunofluorescence using 38 markers on 18 independent biopsy slides confirmed this role of FcγRIII+ NK and FcγRIII+ nonclassical monocytes in antibody-mediated rejection, with specificity to the glomerular area. These results highlight the central involvement of innate immune cells in the pathogenesis of allograft rejection and identify several potential therapeutic targets that might improve allograft longevity.


Asunto(s)
Rechazo de Injerto , Riñón , Riñón/patología , Trasplante Homólogo , Anticuerpos , Aloinjertos , Inmunidad Innata/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA