Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 89(1): 128-143, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36161672

RESUMEN

PURPOSE: The effective transverse relaxation rate ( R 2 * $$ {\mathrm{R}}_2^{\ast } $$ ) is influenced by biological features that make it a useful means of probing brain microstructure. However, confounding factors such as dependence on flip angle (α) and fiber orientation with respect to the main field ( θ $$ \uptheta $$ ) complicate interpretation. The α- and θ $$ \uptheta $$ -dependence stem from the existence of multiple sub-voxel micro-environments (e.g., myelin and non-myelin water compartments). Ordinarily, it is challenging to quantify these sub-compartments; therefore, neuroscientific studies commonly make the simplifying assumption of a mono-exponential decay obtaining a single R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimate per voxel. In this work, we investigated how the multi-compartment nature of tissue microstructure affects single compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates. METHODS: We used 2-pool (myelin and non-myelin water) simulations to characterize the bias in single compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates. Based on our numeric observations, we introduced a linear model that partitions R 2 * $$ {\mathrm{R}}_2^{\ast } $$ into α-dependent and α-independent components and validated this in vivo at 7T. We investigated the dependence of both components on the sub-compartment properties and assessed their robustness, orientation dependence, and reproducibility empirically. RESULTS: R 2 * $$ {\mathrm{R}}_2^{\ast } $$ increased with myelin water fraction and residency time leading to a linear dependence on α. We observed excellent agreement between our numeric and empirical results. Furthermore, the α-independent component of the proposed linear model was robust to the choice of α and reduced dependence on fiber orientation, although it suffered from marginally higher noise sensitivity. CONCLUSION: We have demonstrated and validated a simple approach that mitigates flip angle and orientation biases in single-compartment R 2 * $$ {\mathrm{R}}_2^{\ast } $$ estimates.


Asunto(s)
Imagen por Resonancia Magnética , Vaina de Mielina , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Vaina de Mielina/química , Encéfalo/diagnóstico por imagen , Agua/análisis
2.
Neuroimage ; 238: 118231, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34089871

RESUMEN

The ventralis intermedius nucleus (Vim) is centrally placed in the dentato-thalamo-cortical pathway (DTCp) and is a key surgical target in the treatment of severe medically refractory tremor. It is not visible on conventional MRI sequences; consequently, stereotactic targeting currently relies on atlas-based coordinates. This fails to capture individual anatomical variability, which may lead to poor long-term clinical efficacy. Probabilistic tractography, combined with known anatomical connectivity, enables localisation of thalamic nuclei at an individual subject level. There are, however, a number of confounds associated with this technique that may influence results. Here we focused on an established method, using probabilistic tractography to reconstruct the DTCp, to identify the connectivity-defined Vim (cd-Vim) in vivo. Using 100 healthy individuals from the Human Connectome Project, our aim was to quantify cd-Vim variability across this population, measure the discrepancy with atlas-defined Vim (ad-Vim), and assess the influence of potential methodological confounds. We found no significant effect of any of the confounds. The mean cd-Vim coordinate was located within 1.88 mm (left) and 2.12 mm (right) of the average midpoint and 3.98 mm (left) and 5.41 mm (right) from the ad-Vim coordinates. cd-Vim location was more variable on the right, which reflects hemispheric asymmetries in the probabilistic DTC reconstructed. The method was reproducible, with no significant cd-Vim location differences in a separate test-retest cohort. The superior cerebellar peduncle was identified as a potential source of artificial variance. This work demonstrates significant individual anatomical variability of the cd-Vim that atlas-based coordinate targeting fails to capture. This variability was not related to any methodological confound tested. Lateralisation of cerebellar functions, such as speech, may contribute to the observed asymmetry. Tractography-based methods seem sensitive to individual anatomical variability that is missed by conventional neurosurgical targeting; these findings may form the basis for translational tools to improve efficacy and reduce side-effects of thalamic surgery for tremor.


Asunto(s)
Imagen de Difusión Tensora/métodos , Red Nerviosa/anatomía & histología , Núcleos Talámicos Ventrales/anatomía & histología , Adulto , Variación Biológica Individual , Núcleos Cerebelosos/anatomía & histología , Cerebelo/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Factores de Confusión Epidemiológicos , Conectoma , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Probabilidad , Núcleos Talámicos Ventrales/diagnóstico por imagen , Adulto Joven
3.
Magn Reson Med ; 83(6): 2173-2184, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31840300

RESUMEN

PURPOSE: In diffusion MRI, the actual b-value played out on the scanner may deviate from the nominal value due to magnetic field imperfections. A simple image-based correction method for this problem is presented. METHODS: The apparent diffusion constant (ADC) of a water phantom was measured voxel-wise along 64 diffusion directions at b = 1000 s/mm2 . The true diffusion constant of water was estimated, considering the phantom temperature. A voxel-wise correction factor, providing an effective b-value including any magnetic field deviations, was determined for each diffusion direction by relating the measured ADC to the true diffusion constant. To test the method, the measured b-value map was used to calculate the corrected voxel-wise ADC for additionally acquired diffusion data sets on the same water phantom and data sets acquired on a small water phantom at three different positions. Diffusion tensor was estimated by applying the measured b-value map to phantom and in vivo data sets. RESULTS: The b-value-corrected ADC maps of the phantom showed the expected spatial uniformity as well as a marked improvement in consistency across diffusion directions. The b-value correction for the brain data resulted in a 5.8% and 5.5% decrease in mean diffusivity and angular differences of the primary diffusion direction of 2.71° and 0.73° inside gray and white matter, respectively. CONCLUSION: The actual b-value deviates significantly from its nominal setting, leading to a spatially variable error in the common diffusion outcome measures. The suggested method measures and corrects these artifacts.


Asunto(s)
Artefactos , Imagen de Difusión por Resonancia Magnética , Difusión , Fantasmas de Imagen , Reproducibilidad de los Resultados
4.
Brain ; 142(9): 2558-2571, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327002

RESUMEN

Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.


Asunto(s)
Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Imagen por Resonancia Magnética/métodos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Norepinefrina/metabolismo , Biomarcadores/metabolismo , Humanos
5.
Stroke ; 50(10): 2775-2782, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510902

RESUMEN

Background and Purpose- Cerebral small vessel disease (SVD) is the most common cause of vascular cognitive impairment, with a significant proportion of cases going on to develop dementia. We explore the extent to which diffusion tensor image segmentation technique (DSEG; which characterizes microstructural damage across the cerebrum) predicts both degree of cognitive decline and conversion to dementia, and hence may provide a useful prognostic procedure. Methods- Ninety-nine SVD patients (aged 43-89 years) underwent annual magnetic resonance imaging scanning (for 3 years) and cognitive assessment (for 5 years). DSEG-θ was used as a whole-cerebrum measure of SVD severity. Dementia diagnosis was based Diagnostic and Statistical Manual of Mental Disorders V criteria. Cox regression identified which DSEG measures and vascular risk factors were related to increased risk of dementia. Linear discriminant analysis was used to classify groups of stable versus subsequent dementia diagnosis individuals. Results- DSEG-θ was significantly related to decline in executive function and global cognition (P<0.001). Eighteen (18.2%) patients converted to dementia. Baseline DSEG-θ predicted dementia with a balanced classification rate=75.95% and area under the receiver operating characteristic curve=0.839. The best classification model included baseline DSEG-θ, change in DSEG-θ, age, sex, and premorbid intelligence quotient (balanced classification rate of 79.65%; area under the receiver operating characteristic curve=0.903). Conclusions- DSEG is a fully automatic technique that provides an accurate method for assessing brain microstructural damage in SVD from a single imaging modality (diffusion tensor imaging). DSEG-θ is an important tool in identifying SVD patients at increased risk of developing dementia and has potential as a clinical marker of SVD severity.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Demencia/diagnóstico por imagen , Demencia/etiología , Interpretación de Imagen Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Imagen de Difusión Tensora/métodos , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Stroke ; 49(3): 586-593, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29438074

RESUMEN

BACKGROUND AND PURPOSE: Cerebral small-vessel disease is a major cause of cognitive impairment. Perivascular spaces (PvS) occur in small-vessel disease, but their relationship to cognitive impairment remains uncertain. One reason may be difficulty in distinguishing between lacunes and PvS. We determined the relationship between baseline PvS score and PvS volume with change in cognition over a 5-year follow-up. We compared this to the relationship between baseline lacune count and total lacune volume with cognition. In addition, we examined change in PvS volume over time. METHODS: Data from the prospective SCANS study (St Georges Cognition and Neuroimaging in Stroke) of patients with symptomatic lacunar stroke and confluent leukoaraiosis were used (n=121). Multimodal magnetic resonance imaging was performed annually for 3 years and neuropsychological testing annually for 5 years. Lacunes were manually identified and distinguished from PvS. PvS were rated using a validated visual rating scale, and PvS volumes calculated using T1-weighted images. Linear mixed-effect models were used to determine the impact of PvS and lacunes on cognition. RESULTS: Baseline PvS scores or volumes showed no association with cognitive indices. No change was detectable in PvS volumes over the 3 years. In contrast, baseline lacunes associated with all cognitive indices and predicted cognitive decline over the 5-year follow-up. CONCLUSIONS: Although a feature of small-vessel disease, PvS are not a predictor of cognitive decline, in contrast to lacunes. This study highlights the importance of carefully differentiating between lacunes and PvS in studies investigating vascular cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , Imagen Multimodal , Accidente Vascular Cerebral Lacunar , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Accidente Vascular Cerebral Lacunar/complicaciones , Accidente Vascular Cerebral Lacunar/diagnóstico por imagen , Accidente Vascular Cerebral Lacunar/fisiopatología
7.
J Neurol Neurosurg Psychiatry ; 89(5): 476-481, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29079677

RESUMEN

OBJECTIVE: To determine clinical and structural imaging predictors of impulsive-compulsive behaviour (ICB) in de novo Parkinson's disease (PD). METHODS: From a cohort of 1116 subjects from the Parkinson's Progression Marker Initiative database, we created a subcohort of 42 de novo PD without ICB at baseline with available 3T MRI and who developed ICB during follow-up. PD-ICB were matched for age, gender and disease duration to 42 patients with PD without ICB over follow-up (PD-no-ICB) and 42 healthy controls (HCs). Baseline demographic and clinical predictors of ICB were analysed. For the longitudinal neuroimaging analysis, we selected 27 patients with PD-ICB with available neuroimaging after ICB onset, who were matched with 32 PD-no-ICB and 35 HCs. Baseline and longitudinal structural differences were compared using voxel-based morphometry and voxel-based quantification. RESULTS: People who went on to develop ICB had more severe anxiety, worse autonomic and global cognitive functions and were more likely to have rapid eye movement sleep behaviour disorder. Logistic regression confirmed that worse autonomic and cognitive functions were predictors of ICB. We could not find any morphological feature on baseline MRI that predicted later onset of ICB. When comparing PD groups at follow-up, a small region of increased atrophy in the anterior limb of the left internal capsule adjacent to the head of the left caudate nucleus was found in PD-ICB, but not surviving correction for multiple comparisons. CONCLUSIONS: Worse autonomic and cognitive functions predict development of ICB at the time of PD diagnosis. Structural imaging fails to identify morphological features associated with the development of ICB.


Asunto(s)
Conducta Compulsiva/complicaciones , Conducta Compulsiva/diagnóstico , Conducta Impulsiva , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Atrofia/patología , Estudios de Casos y Controles , Conducta Compulsiva/patología , Femenino , Humanos , Cápsula Interna/patología , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Pruebas Neuropsicológicas , Enfermedad de Parkinson/patología , Valor Predictivo de las Pruebas , Escalas de Valoración Psiquiátrica , Factores de Riesgo
8.
Neuroimage ; 158: 466-479, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27639355

RESUMEN

The thalamus consists of multiple nuclei that have been previously defined by their chemoarchitectual and cytoarchitectual properties ex vivo. These form discrete, functionally specialized, territories with topographically arranged graduated patterns of connectivity. However, previous in vivo thalamic parcellation with MRI has been hindered by substantial inter-individual variability or discrepancies between MRI derived segmentations and histological sections. Here, we use the Euclidean distance to characterize probabilistic tractography distributions derived from diffusion MRI. We generate 12 feature maps by performing voxel-wise parameterization of the distance histograms (6 feature maps) and the distribution of three-dimensional distance transition gradients generated by applying a Sobel kernel to the distance metrics. We use these 12 feature maps to delineate individual thalamic nuclei, then extract the tractography profiles for each and calculate the voxel-wise tractography gradients. Within each thalamic nucleus, the tractography gradients were topographically arranged as distinct non-overlapping cortical networks with transitory overlapping mid-zones. This work significantly advances quantitative segmentation of the thalamus in vivo using 3T MRI. At an individual subject level, the thalamic segmentations consistently achieve a close relationship with a priori histological atlas information, and resolve in vivo topographic gradients within each thalamic nucleus for the first time. Additionally, these techniques allow individual thalamic nuclei to be closely aligned across large populations and generate measures of inter-individual variability that can be used to study both basic function and pathological processes in vivo.


Asunto(s)
Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Núcleos Talámicos/anatomía & histología , Núcleos Talámicos/fisiología , Adulto , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
9.
Brain ; 139(Pt 4): 1136-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26936939

RESUMEN

Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≥1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson's R = -0.69, P < 1 × 10(-7)), and significant grey matter loss and whole brain atrophy occurs annually (P < 0.05). Additionally, the rate of white matter hyperintensity growth was heterogeneous, occurring more rapidly within long association fasciculi. Using voxel-based quantification (family-wise error corrected P < 0.05), we show the rate of white matter hyperintensity progression is associated with increases in cortical grey matter atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities with increasing rates of regional grey matter atrophy, and demonstrate that grey matter atrophy is the major contributor to whole brain atrophy in symptomatic cerebral small vessel disease. These measures provide novel insights into the longitudinal pathogenesis of small vessel disease, and imply that therapies aimed at reducing progression of white matter hyperintensities via end-arteriole damage may protect against secondary brain atrophy and consequent functional morbidity.


Asunto(s)
Encéfalo/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Progresión de la Enfermedad , Leucoaraiosis/diagnóstico , Leucoaraiosis/epidemiología , Anciano , Anciano de 80 o más Años , Atrofia/patología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos
10.
Neuroimage ; 110: 1-2, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25620491

RESUMEN

Recently in this journal, Alkemade and Forstmann again challenged the evidence for a tripartite organisation to the subthalamic nucleus (STN) (Alkemade & Forstmann 2014). Additionally, they raised specific issues with the earlier published results using 3T MRI to perform in vivo diffusion weighted imaging (DWI) based segmentation of the STN (Lambert et al. 2012). Their comments reveal a common misconception related to the underlying methodologies used, which we clarify in this reply, in addition to highlighting how their current conclusions are synonymous with our original paper. The ongoing debate, instigated by the controversies surrounding STN parcellation, raises important implications for the assumptions and methodologies employed in mapping functional brain anatomy, both in vivo and ex vivo, and reveals a fundamental emergent problem with the current techniques. These issues are reviewed, and potential strategies that could be developed to manage them in the future are discussed further.


Asunto(s)
Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/fisiología , Mapeo Encefálico , Estimulación Encefálica Profunda , Humanos , Imagen por Resonancia Magnética
12.
Neuroimage ; 81: 191-198, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23684858

RESUMEN

Substantia nigra/ventral tegmental area (SN/VTA) subregions, defined by dopaminergic projections to the striatum, are differentially affected by health (e.g. normal aging) and disease (e.g. Parkinson's disease). This may have an impact on reward processing which relies on dopaminergic regions and circuits. We acquired diffusion tensor imaging (DTI) with probabilistic tractography in 30 healthy older adults to determine whether subregions of the SN/VTA could be delineated based on anatomical connectivity to the striatum. We found that a dorsomedial region of the SN/VTA preferentially connected to the ventral striatum whereas a more ventrolateral region connected to the dorsal striatum. These SN/VTA subregions could be characterised by differences in quantitative structural imaging parameters, suggesting different underlying tissue properties. We also observed that these connectivity patterns differentially mapped onto reward dependence personality trait. We show that tractography can be used to parcellate the SN/VTA into anatomically plausible and behaviourally meaningful compartments, an approach that may help future studies to provide a more fine-grained synopsis of pathological changes in the dopaminergic midbrain and their functional impact.


Asunto(s)
Mapeo Encefálico/métodos , Cuerpo Estriado/citología , Vías Nerviosas/citología , Sustancia Negra/citología , Anciano , Cuerpo Estriado/fisiología , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Vías Nerviosas/fisiología , Personalidad/fisiología , Recompensa , Sustancia Negra/fisiología
13.
Front Pharmacol ; 14: 1177421, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448960

RESUMEN

The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.

14.
J Parkinsons Dis ; 13(6): 1011-1033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545260

RESUMEN

BACKGROUND: Multi-arm, multi-stage (MAMS) platform trials can accelerate the identification of disease-modifying treatments for Parkinson's disease (PD) but there is no current consensus on the optimal outcome measures (OM) for this approach. OBJECTIVE: To provide an up-to-date inventory of OM for disease-modifying PD trials, and a framework for future selection of OM for such trials. METHODS: As part of the Edmond J Safra Accelerating Clinical Trials in Parkinson Disease (EJS ACT-PD) initiative, an expert group with Patient and Public Involvement and Engagement (PPIE) representatives' input reviewed and evaluated available evidence on OM for potential use in trials to delay progression of PD. Each OM was ranked based on aspects such as validity, sensitivity to change, participant burden and practicality for a multi-site trial. Review of evidence and expert opinion led to the present inventory. RESULTS: An extensive inventory of OM was created, divided into: general, motor and non-motor scales, diaries and fluctuation questionnaires, cognitive, disability and health-related quality of life, capability, quantitative motor, wearable and digital, combined, resource use, imaging and wet biomarkers, and milestone-based. A framework for evaluation of OM is presented to update the inventory in the future. PPIE input highlighted the need for OM which reflect their experience of disease progression and are applicable to diverse populations and disease stages. CONCLUSION: We present a range of OM, classified according to a transparent framework, to aid selection of OM for disease-modifying PD trials, whilst allowing for inclusion or re-classification of relevant OM as new evidence emerges.


Asunto(s)
Enfermedad de Parkinson , Humanos , Consenso , Progresión de la Enfermedad , Evaluación de Resultado en la Atención de Salud , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/psicología , Calidad de Vida
15.
Neuroimage ; 60(1): 83-94, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22173294

RESUMEN

The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Núcleo Subtalámico/anatomía & histología , Núcleo Subtalámico/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Masculino , Literatura de Revisión como Asunto
16.
Front Physiol ; 13: 1044488, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467705

RESUMEN

Musculoskeletal diseases are a leading contributor to mobility disability worldwide. Since the majority of patients with musculoskeletal diseases present with associated muscle weakness, treatment approaches typically comprise an element of resistance training to restore physical strength. The health-promoting effects of resistance exercise are mediated via complex, multifarious mechanisms including modulation of systemic and local inflammation. Here we investigated whether targeted inhibition of the chemerin pathway, which largely controls inflammatory processes via chemokine-like receptor 1 (CMKLR1), can improve skeletal muscle function. Using genetically modified mice, we demonstrate that blockade of CMKLR1 transiently increases maximal strength during growth, but lastingly decreases strength endurance. In-depth analyses of the underlying long-term adaptations revealed microscopic alterations in the number of Pax7-positive satellite cells, as well as molecular changes in genes governing myogenesis and calcium handling. Taken together, these data provide evidence of a critical role for CMKLR1 in regulating skeletal muscle function by modulating the regenerative and contractile properties of muscle tissue. CMKLR1 antagonists are increasingly viewed as therapeutic modalities for a variety of diseases (e.g., psoriasis, metabolic disorders, and multiple sclerosis). Our findings thus have implications for the development of novel drug substances that aim at targeting the chemerin pathway for musculoskeletal or other diseases.

17.
Sci Rep ; 12(1): 157, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997110

RESUMEN

The objective of this work was to assess the consequences of repeated intra-articular injection of monosodium urate (MSU) crystals with inflammasome priming by lipopolysaccharide (LPS) in order to simulate recurrent bouts of gout in rats. Translational imaging was applied to simultaneously detect and quantify injury in different areas of the knee joint. MSU/LPS induced joint swelling, synovial membrane thickening, fibrosis of the infrapatellar fat pad, tidemark breaching, and cartilage invasion by inflammatory cells. A higher sensitivity to mechanical stimulus was detected in paws of limbs receiving MSU/LPS compared to saline-injected limbs. In MSU/LPS-challenged joints, magnetic resonance imaging (MRI) revealed increased synovial fluid volume in the posterior region of the joint, alterations in the infrapatellar fat pad reflecting a progressive decrease of fat volume and fibrosis formation, and a significant increase in the relaxation time T2 in femoral cartilage, consistent with a reduction of proteoglycan content. MRI also showed cyst formation in the tibia, femur remodeling, and T2 reductions in extensor muscles consistent with fibrosis development. Repeated intra-articular MSU/LPS injections in the rat knee joint induced pathology in multiple tissues and may be a useful means to investigate the relationship between urate crystal deposition and the development of degenerative joint disease.


Asunto(s)
Artritis Gotosa/diagnóstico por imagen , Articulaciones/diagnóstico por imagen , Imagen por Resonancia Magnética , Ácido Úrico , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Artritis Gotosa/patología , Biopsia , Cristalización , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Inyecciones Intraarticulares , Articulaciones/metabolismo , Articulaciones/patología , Lipopolisacáridos , Valor Predictivo de las Pruebas , Ratas , Ratas Endogámicas Lew , Líquido Sinovial/metabolismo , Factores de Tiempo , Investigación Biomédica Traslacional , Microtomografía por Rayos X
18.
Med Image Anal ; 73: 102149, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34271531

RESUMEN

Quantitative MR imaging is increasingly favoured for its richer information content and standardised measures. However, computing quantitative parameter maps, such as those encoding longitudinal relaxation rate (R1), apparent transverse relaxation rate (R2*) or magnetisation-transfer saturation (MTsat), involves inverting a highly non-linear function. Many methods for deriving parameter maps assume perfect measurements and do not consider how noise is propagated through the estimation procedure, resulting in needlessly noisy maps. Instead, we propose a probabilistic generative (forward) model of the entire dataset, which is formulated and inverted to jointly recover (log) parameter maps with a well-defined probabilistic interpretation (e.g., maximum likelihood or maximum a posteriori). The second order optimisation we propose for model fitting achieves rapid and stable convergence thanks to a novel approximate Hessian. We demonstrate the utility of our flexible framework in the context of recovering more accurate maps from data acquired using the popular multi-parameter mapping protocol. We also show how to incorporate a joint total variation prior to further decrease the noise in the maps, noting that the probabilistic formulation allows the uncertainty on the recovered parameter maps to be estimated. Our implementation uses a PyTorch backend and benefits from GPU acceleration. It is available at https://github.com/balbasty/nitorch.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Humanos
19.
J Parkinsons Dis ; 11(4): 1901-1915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34180422

RESUMEN

BACKGROUND: Bradykinesia is the defining motor feature of Parkinson's disease (PD). There are limitations to its assessment using standard clinical rating scales, especially in the early stages of PD when a floor effect may be observed. OBJECTIVE: To develop a quantitative method to track repetitive tapping movements and to compare people in the early stages of PD, healthy controls, and individuals with idiopathic anosmia. METHODS: This was a cross-sectional study of 99 participants (early-stage PD = 26, controls = 64, idiopathic anosmia = 9). For each participant, repetitive finger tapping was recorded over 20 seconds using a smartphone at 240 frames per second. From each video, amplitude between fingers, frequency (number of taps per second), and velocity (distance travelled per second) was extracted. Clinical assessment was based on the motor section of the MDS-UPDRS. RESULTS: People in the early stage of PD performed the task with slower velocity (p < 0.001) and with greater frequency slope than controls (p = 0.003). The combination of reduced velocity and greater frequency slope obtained the best accuracy to separate early-stage PD from controls based on metric thresholds alone (AUC = 0.88). Individuals with anosmia exhibited slower velocity (p = 0.001) and smaller amplitude (p < 0.001) compared with controls. CONCLUSION: We present a simple, proof-of-concept method to detect early motor dysfunction in PD. Mean tap velocity appeared to be the best parameter to differentiate patients with PD from controls. Patients with anosmia also showed detectable differences in motor performance compared with controls which may suggest that some were in the prodromal phase of PD.


Asunto(s)
Anosmia , Hipocinesia , Enfermedad de Parkinson , Anosmia/patología , Estudios de Casos y Controles , Estudios Transversales , Humanos , Hipocinesia/diagnóstico , Enfermedad de Parkinson/patología
20.
JCI Insight ; 6(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33290274

RESUMEN

BACKGROUNDNeuronal hyperexcitability characterizes the early stages of Alzheimer's disease (AD). In animals, early misfolded tau and amyloid-ß (Aß) protein accumulation - both central to AD neuropathology - promote cortical excitability and neuronal network dysfunction. In healthy humans, misfolded tau and Aß aggregates are first detected, respectively, in the brainstem and frontomedial and temporobasal cortices, decades prior to the onset of AD cognitive symptoms. Whether cortical excitability is related to early brainstem tau - and its associated neuroinflammation - and cortical Aß aggregations remains unknown.METHODSWe probed frontal cortex excitability, using transcranial magnetic stimulation combined with electroencephalography, in a sample of 64 healthy late-middle-aged individuals (50-69 years; 45 women and 19 men). We assessed whole-brain [18F]THK5351 PET uptake as a proxy measure of tau/neuroinflammation, and we assessed whole-brain Aß burden with [18F]Flutemetamol or [18F]Florbetapir radiotracers.RESULTSWe found that higher [18F]THK5351 uptake in a brainstem monoaminergic compartment was associated with increased cortical excitability (r = 0.29, P = 0.02). By contrast, [18F]THK5351 PET signal in the hippocampal formation, although strongly correlated with brainstem signal in whole-brain voxel-based quantification analyses (P value corrected for family-wise error [PFWE-corrected] < 0.001), was not significantly associated with cortical excitability (r = 0.14, P = 0.25). Importantly, no significant association was found between early Aß cortical deposits and cortical excitability (r = -0.20, P = 0.11).CONCLUSIONThese findings reveal potential brain substrates for increased cortical excitability in preclinical AD and may constitute functional in vivo correlates of early brainstem tau accumulation and neuroinflammation in humans.TRIAL REGISTRATIONEudraCT 2016-001436-35.FUNDINGF.R.S.-FNRS Belgium, Wallonie-Bruxelles International, ULiège, Fondation Simone et Pierre Clerdent, European Regional Development Fund.


Asunto(s)
Aminopiridinas/farmacocinética , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/metabolismo , Corteza Cerebral/fisiopatología , Envejecimiento Saludable/metabolismo , Quinolinas/farmacocinética , Radiofármacos/farmacocinética , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Corteza Cerebral/patología , Estudios Transversales , Diagnóstico Precoz , Electroencefalografía , Femenino , Radioisótopos de Flúor/farmacocinética , Neuroimagen Funcional , Envejecimiento Saludable/patología , Envejecimiento Saludable/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Estimulación Magnética Transcraneal , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA