Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Heart Vessels ; 39(4): 299-309, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367040

RESUMEN

Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) are invasive techniques used to evaluate the hemodynamic significance of coronary artery stenosis. These methods have been validated through perfusion imaging and clinical trials. New invasive pressure ratios that do not require hyperemia have recently emerged, and it is essential to confirm their diagnostic efficacy. The aim of this study was to validate the resting full-cycle ratio (RFR) and the diastolic pressure ratio (dPR), against [15O]H2O positron emission tomography (PET) imaging. A total of 129 symptomatic patients with an intermediate risk of coronary artery disease (CAD) were included. All patients underwent cardiac [15O]H2O PET with quantitative assessment of resting and hyperemic myocardial perfusion. Within a 2 week period, coronary angiography was performed. Intracoronary pressure measurements were obtained in 320 vessels and RFR, dPR, and FFR were computed. PET derived regional hyperemic myocardial blood flow (hMBF) and myocardial perfusion reserve (MPR) served as reference standards. In coronary arteries with stenoses (43%, 136 of 320), the overall diagnostic accuracies of RFR, dPR, and FFR did not differ when PET hyperemic MBF < 2.3 ml min-1 (69.9%, 70.6%, and 77.1%, respectively) and PET MPR < 2.5 (70.6%, 71.3%, and 66.9%, respectively) were considered as the reference for myocardial ischemia. Non-significant differences between the areas under the receiver operating characteristic (ROC) curve were found between the different indices. Furthermore, the integration of FFR with RFR (or dPR) does not enhance the diagnostic information already achieved by FFR in the characterization of ischemia via PET perfusion. In conclusion, the novel non-hyperemic pressure ratios, RFR and dPR, have a diagnostic performance comparable to FFR in assessing regional myocardial ischemia. These findings suggest that RFR and dPR may be considered as an FFR alternative for invasively guiding revascularization treatment in symptomatic patients with CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Presión Sanguínea , Cateterismo Cardíaco , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Tomografía de Emisión de Positrones , Angiografía Coronaria , Vasos Coronarios/diagnóstico por imagen , Valor Predictivo de las Pruebas
2.
J Nucl Med ; 65(4): 600-606, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38485272

RESUMEN

Because of the limited axial field of view of conventional PET scanners, the internal carotid arteries are commonly used to obtain an image-derived input function (IDIF) in quantitative brain PET. However, time-activity curves extracted from the internal carotids are prone to partial-volume effects due to the limited PET resolution. This study aimed to assess the use of the internal carotids for quantifying brain glucose metabolism before and after partial-volume correction. Methods: Dynamic [18F]FDG images were acquired on a 106-cm-long PET scanner, and quantification was performed with a 2-tissue-compartment model and Patlak analysis using an IDIF extracted from the internal carotids. An IDIF extracted from the ascending aorta was used as ground truth. Results: The internal carotid IDIF underestimated the area under the curve by 37% compared with the ascending aorta IDIF, leading to Ki values approximately 17% higher. After partial-volume correction, the mean relative Ki differences calculated with the ascending aorta and internal carotid IDIFs dropped to 7.5% and 0.05%, when using a 2-tissue-compartment model and Patlak analysis, respectively. However, microparameters (K 1, k 2, k 3) derived from the corrected internal carotid curve differed significantly from those obtained using the ascending aorta. Conclusion: These results suggest that partial-volume-corrected internal carotids may be used to estimate Ki but not kinetic microparameters. Further validation in a larger patient cohort with more variable kinetics is needed for more definitive conclusions.


Asunto(s)
Arteria Carótida Interna , Tomografía de Emisión de Positrones , Humanos , Arteria Carótida Interna/diagnóstico por imagen , Arteria Carótida Interna/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Glucosa/metabolismo , Arterias Carótidas/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA