Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2316544121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442155

RESUMEN

Muscle regeneration is a complex process relying on precise teamwork between multiple cell types, including muscle stem cells (MuSCs) and fibroadipogenic progenitors (FAPs). FAPs are also the main source of intramuscular adipose tissue (IMAT). Muscles without FAPs exhibit decreased IMAT infiltration but also deficient muscle regeneration, indicating the importance of FAPs in the repair process. Here, we demonstrate the presence of bidirectional crosstalk between FAPs and MuSCs via their secretion of extracellular vesicles (EVs) containing distinct clusters of miRNAs that is crucial for normal muscle regeneration. Thus, after acute muscle injury, there is activation of FAPs leading to a transient rise in IMAT. These FAPs also release EVs enriched with a selected group of miRNAs, a number of which come from an imprinted region on chromosome 12. The most abundant of these is miR-127-3p, which targets the sphingosine-1-phosphate receptor S1pr3 and activates myogenesis. Indeed, intramuscular injection of EVs from immortalized FAPs speeds regeneration of injured muscle. In late stages of muscle repair, in a feedback loop, MuSCs and their derived myoblasts/myotubes secrete EVs enriched in miR-206-3p and miR-27a/b-3p. The miRNAs repress FAP adipogenesis, allowing full muscle regeneration. Together, the reciprocal communication between FAPs and muscle cells via miRNAs in their secreted EVs plays a critical role in limiting IMAT infiltration while stimulating muscle regeneration, hence providing an important mechanism for skeletal muscle repair and homeostasis.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Células Satélite del Músculo Esquelético , Fibras Musculares Esqueléticas , Comunicación , MicroARNs/genética , Regeneración/genética
2.
Int Braz J Urol ; 50(5): 572-584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38787616

RESUMEN

OBJECTIVE: With the development of analytical methods, mathematical models based on humoral biomarkers have become more widely used in the medical field. This study aims to investigate the risk factors associated with the occurrence of bladder spasm after transurethral resection of the prostate (TURP) in patients with prostate enlargement, and then construct a nomogram model. MATERIALS AND METHODS: Two hundred and forty-two patients with prostate enlargement who underwent TURP were included. Patients were divided into Spasm group (n=65) and non-spasm group (n=177) according to whether they had bladder spasm after surgery. Serum prostacyclin (PGI2) and 5-hydroxytryptamine (5-HT) levels were measured by enzyme-linked immunoassay. Univariate and multivariate logistic regression were used to analyze the risk factors. RESULTS: Postoperative serum PGI2 and 5-HT levels were higher in patients in the Spasm group compared with the Non-spasm group (P<0.05). Preoperative anxiety, drainage tube obstruction, and elevated postoperative levels of PGI2 and 5-HT were independent risk factors for bladder spasm after TURP (P<0.05). The C-index of the model was 0.978 (0.959-0.997), with a χ2 = 4.438 (p = 0.816) for Hosmer-Lemeshow goodness-of-fit test. The ROC curve to assess the discrimination of the nomogram model showed an AUC of 0.978 (0.959-0.997). CONCLUSION: Preoperative anxiety, drainage tube obstruction, and elevated postoperative serum PGI2 and 5-HT levels are independent risk factors for bladder spasm after TURP. The nomogram model based on the aforementioned independent risk factors had good discrimination and predictive abilities, which may provide a high guidance value for predicting the occurrence of bladder spasm in clinical practice.


Asunto(s)
Nomogramas , Hiperplasia Prostática , Serotonina , Resección Transuretral de la Próstata , Humanos , Masculino , Hiperplasia Prostática/cirugía , Hiperplasia Prostática/sangre , Anciano , Resección Transuretral de la Próstata/efectos adversos , Factores de Riesgo , Serotonina/sangre , Persona de Mediana Edad , Biomarcadores/sangre , Espasmo/etiología , Espasmo/sangre , Complicaciones Posoperatorias/sangre , Complicaciones Posoperatorias/etiología , Curva ROC , Enfermedades de la Vejiga Urinaria/etiología , Enfermedades de la Vejiga Urinaria/sangre , Valores de Referencia
3.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077405

RESUMEN

Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity.


Asunto(s)
Tejido Adiposo Pardo , Interleucina-6 , Tejido Adiposo Pardo/metabolismo , Animales , Diferenciación Celular , Metabolismo Energético , Homeostasis , Inmunoglobulinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucina/metabolismo , Ratones , Músculo Esquelético/metabolismo , NADH Deshidrogenasa/metabolismo , Termogénesis
4.
Cells ; 13(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786060

RESUMEN

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Asunto(s)
Antioxidantes , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Antioxidantes/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Cisplatino/farmacología , Femenino , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide , Ratones , Piruvato Quinasa/metabolismo , Glucólisis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas Portadoras/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/enzimología
5.
Int J Biochem Cell Biol ; 159: 106420, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116777

RESUMEN

Insulin resistance is the leading cause of type 2 diabetes (T2D), and dysfunctional insulin receptor signaling is a major manifestation of this insulin resistance. In T2D, the corresponding insulin receptor levels are aberrantly down-regulated, which is one of the major factors underlying obesity-induced insulin resistance in adipose tissue. However, the precise mechanism of insulin receptor impairment in obese individuals remains unclear. In the current study, we established that immunoglobulin superfamily containing leucine-rich repeat (Islr) is highly expressed in adipocytes of mice fed a high-fat diet. We further demonstrated that Islr mediates the ubiquitin-independent proteasomal degradation of insulin receptor alpha (Insrα) by specifically interacting with proteasome subunit alpha type 4 (Psma4). Islr knockout increased the corresponding Insrα subunit levels and enhanced insulin sensitivity in adipocytes, ultimately improving systemic metabolism. Further, siRNA-mediated down-regulation of Islr expression in the white adipose tissue of obese mice increased insulin sensitivity. Overall, Islr regulates insulin sensitivity by interacting with Psma4 to control the ubiquitin-independent proteasomal degradation of Insrα in obese mice, indicating that Islr may be a potential therapeutic target for ameliorating insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Ratones , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/metabolismo , Receptor de Insulina/genética , Ubiquitinas
6.
J Vis Exp ; (197)2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37486127

RESUMEN

Researchers in the cell and gene therapy (CGT) industry have long faced a formidable challenge in the efficient and large-scale expansion of cells. To address the primary shortcomings of the two-dimensional (2D) planar culturing system, we innovatively developed an automated closed industrial scale cell production (ACISCP) platform based on a GMP-grade, dissolvable, and porous microcarrier for the 3D culture of adherent cells, including human mesenchymal stem/stromal cells (hMSCs), HEK293T cells, and Vero cells. To achieve large-scale expansion, a two-stage expansion was conducted with 5 L and 15 L stirred-tank bioreactors to yield 1.1 x 1010 hMSCs with an overall 128-fold expansion within 9 days. The cells were harvested by completely dissolving the microcarriers, concentrated, washed and formulated with a continuous-flow centrifuge-based cell processing system, and then aliquoted with a cell filling system. Compared with 2D planar culture, there are no significant differences in the quality of hMSCs harvested from 3D culture. We have also applied these dissolvable porous microcarriers to other popular cell types in the CGT sector; specifically, HEK293T cells and Vero cells have been cultivated to peak cell densities of 1.68 x 107 cells/mL and 1.08 x 107 cells/mL, respectively. This study provides a protocol for using a bioprocess engineering platform harnessing the characteristics of GMP-grade dissolvable microcarriers and advanced closed equipment to achieve the industrial-scale manufacturing of adherent cells.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas , Animales , Chlorocebus aethiops , Humanos , Técnicas de Cultivo de Célula/métodos , Células HEK293 , Porosidad , Células Vero , Reactores Biológicos , Proliferación Celular , Diferenciación Celular
7.
Theranostics ; 13(8): 2588-2604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215564

RESUMEN

Background: The balance between the differentiation and self-renewal of satellite cells (SCs) is essential for skeletal muscle homeostasis and regeneration. Our knowledge of this regulatory process is incomplete. Methods: Using global and conditional knockout mice as in vivo models and isolated satellite cells as in vitro system, we investigated the regulatory mechanisms of IL34 in the process of skeletal muscle regeneration in vivo and in vitro. Results: Myocytes and regenerating fibers are major source of IL34. Deletion of interleukin 34 (IL34) sustains expansion by sacrificing the differentiation of SCs and leads to significant muscle regeneration defects. We further found that inactivating IL34 in SCs leads to hyperactivation of NFKB1 signaling; NFKB1 translocates to the nucleus and binds to the promoter region of Igfbp5 to synergistically disturb protein kinase B (Akt) activity. Notably, augmented Igfbp5 function in SCs led to deficient differentiation and Akt activity. Furthermore, disrupting Akt activity both in vivo and in vitro mimicked the phenotype of IL34 knockout. Finally, deleting IL34 or interfering Akt in mdx mice ameliorates dystrophic muscles. Conclusion: We comprehensively characterized regenerating myofibers-expressed IL34 plays a pivotal role in controlling myonuclear domain. The results also indicate that impairing IL34 function by promoting SC maintenance can lead to improved muscular performance in mdx mice in which the stem cell pool is compromised.


Asunto(s)
Interleucinas , Distrofia Muscular de Duchenne , Animales , Ratones , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre/metabolismo , Interleucinas/genética
8.
DNA Cell Biol ; 40(9): 1167-1176, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34255539

RESUMEN

Skeletal muscle has great plasticity. An increase in protein degradation can cause muscle atrophy. Atrogin-1 and muscle ring finger-1 (MuRF1) are dramatically upregulated in various muscle atrophy. Inhibition of Atrogin-1 and MuRF1 protects against muscle atrophy. MiR-29 plays an important regulatory role in skeletal muscle development. However, the function of miR-29 in skeletal muscle protein metabolism is not clear. To investigate the function of miR-29, we generated miR-29 knockout mice and the miR-29ab1 cluster overexpression mice. The disruption of miR-29 led to severe atrophy of skeletal muscle during puberty, and the muscle-specific overexpression of the miR-29ab1 cluster protected against denervation-induced and fasting-induced muscle atrophy. Furthermore, the overexpression of miR-29a, b mimics in myotubes resisted the muscle atrophy. MuRF1 was the direct target gene of miR-29a, b. These results demonstrate that miR-29ab1 cluster plays a critical role in the maintenance of skeletal muscle. MiR-29ab1 cluster is the excellent inhibitor of MuRF1, ultimately indicating that miR-29ab1 cluster is good therapeutic molecule candidate for adulthood.


Asunto(s)
MicroARNs/fisiología , Desarrollo de Músculos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mioblastos
9.
Cell Death Differ ; 27(3): 949-965, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31332295

RESUMEN

Quiescent satellite cells (SCs) that are activated to produce numerous myoblasts underpin the complete healing of damaged skeletal muscle. How cell-autonomous regulatory mechanisms modulate the balance among cells committed to differentiation and those committed to self-renewal to maintain the stem cell pool remains poorly explored. Here, we show that miR-31 inactivation compromises muscle regeneration in adult mice by impairing the expansion of myoblasts. miR-31 is pivotal for SC proliferation, and its deletion promotes asymmetric cell fate segregation of proliferating cells, resulting in enhanced myogenic commitment and re-entry into quiescence. Further analysis revealed that miR-31 posttranscriptionally suppresses interleukin 34 (IL34) mRNA, the protein product of which activates JAK-STAT3 signaling required for myogenic progression. IL34 inhibition rescues the regenerative deficiency of miR-31 knockout mice. Our results provide evidence that targeting miR-31 or IL34 activities in SCs could be used to counteract the functional exhaustion of SCs in pathological conditions.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Autorrenovación de las Células , Interleucinas/metabolismo , MicroARNs/metabolismo , Animales , Secuencia de Bases , Ciclo Celular , Proliferación Celular , Células Cultivadas , Eliminación de Gen , Quinasas Janus/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Desarrollo de Músculos , Factor de Transcripción PAX7/metabolismo , Regeneración , Factor de Transcripción STAT3/metabolismo , Células Satélite del Músculo Esquelético , Transducción de Señal
11.
Cells ; 8(5)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096686

RESUMEN

Ullrich congenital muscular dystrophy (UCMD) bring heavy burden to patients' families and society. Because the incidence of this disease is very low, studies in patients are extremely limited. Animal models of this disease are indispensable. UCMD belongs to extracellular matrix-related diseases. However, the disease models constructed by knocking out some pathogenic genes of human, such as the Col6a1, Col6a2, or Col6a3 gene, of mice could not mimic UCMD. The purpose of this study is to construct a mouse model which can resemble the pathology of UCMD. miR-29 is closely related to extracellular matrix deposition of tissues and organs. To address this issue, we developed a mouse model for overexpression miR-29 using Tet-on system. In the muscle-specific miR-29ab1 cluster transgenic mice model, we found that mice exhibited dyskinesia, dyspnea, and spinal anomaly. The skeletal muscle was damaged and regenerated. At the same time, we clarify the molecular mechanism of the role of miR-29 in this process. Different from human, Col4a1 and Col4a2, target genes of miR-29, are the key pathogenic genes associating with these phenotypes. This mouse model simulates the human clinical and pathological characteristics of UCMD patients and is helpful for the subsequent research and treatment of UCMD.


Asunto(s)
Modelos Animales de Enfermedad , Ratones , MicroARNs/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Esclerosis/genética , Esclerosis/patología , Animales , Colágeno Tipo IV/genética , Humanos , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Mutación , Fragmentos de Péptidos/genética , Fenotipo
12.
Cell Rep ; 29(8): 2489-2504.e4, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747615

RESUMEN

Hair follicle stem cells (HFSCs) and subsequent generations of matrix progeny make lineage choices by responding to spatiotemporal signals; however, the cues driving that specification are not well understood. Here, we demonstrate that the dynamics of microRNA (miR)-29 expression are inversely proportional to HFSC lineage progression. Furthermore, we show that sustained miR-29a/b1 overexpression in anagen or telogen in mice causes a short-hair phenotype and eventual hair loss by inhibiting the proliferation of HFSCs and matrix cells and likely preventing their differentiation. Conversely, in a loss-of-function in vivo model, miR-29a/b1 deficiency accelerates HFSC lineage progression in telogen. Mechanistically, miR-29a/b1 blocks HFSC lineage specification by spatiotemporally targeting Ctnnb1, Lrp6, Bmpr1a, and Ccna2. We further show that skin-specific Lrp6 or Bmpr1a ablation partially accounts for the short-hair phenotype. Overall, these synergistic targets reveal miR-29a/b1 as a high-fidelity antagonist of HFSC lineage progression and a potential therapeutic target for hair loss.


Asunto(s)
Folículo Piloso/citología , MicroARNs/metabolismo , Células Madre/citología , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Ciclina A2/genética , Ciclina A2/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , MicroARNs/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo
13.
Nat Commun ; 9(1): 5129, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510196

RESUMEN

Satellite cells are crucial for skeletal muscle regeneration, but the molecular mechanisms regulating satellite cells are not entirely understood. Here, we show that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a newly identified marker for mesenchymal stem cells, stabilizes canonical Wnt signaling and promote skeletal muscle regeneration. Loss of Islr delays skeletal muscle regeneration in adult mice. In the absence of Islr, myoblasts fail to develop into mature myotubes due to defective differentiation. Islr interacts with Dishevelled-2 (Dvl2) to activate canonical Wnt signaling, consequently regulating the myogenic factor myogenin (MyoG). Furthermore, Islr stabilizes Dvl2 by reducing the level of LC3-labeled Dvl2 and preventing cells from undergoing autophagy. Together, our findings identify Islr as an important regulator for skeletal muscle regeneration.


Asunto(s)
Autofagia , Proteínas Dishevelled/metabolismo , Inmunoglobulinas/metabolismo , Músculo Esquelético/fisiopatología , Regeneración , Vía de Señalización Wnt , Animales , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Proteínas Dishevelled/genética , Células HEK293 , Humanos , Inmunoglobulinas/genética , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA