Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 152(4): 873-83, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415233

RESUMEN

Embryonic stem cells (ESCs) can instruct the conversion of differentiated cells toward pluripotency following cell-to-cell fusion by a mechanism that is rapid but poorly understood. Here, we used centrifugal elutriation to enrich for mouse ESCs at sequential stages of the cell cycle and showed that ESCs in S/G2 phases have an enhanced capacity to dominantly reprogram lymphocytes and fibroblasts in heterokaryon and hybrid assays. Reprogramming success was associated with an ability to induce precocious nucleotide incorporation within the somatic partner nuclei in heterokaryons. BrdU pulse-labeling experiments revealed that virtually all successfully reprogrammed somatic nuclei, identified on the basis of Oct4 re-expression, had undergone DNA synthesis within 24 hr of fusion with ESCs. This was essential for successful reprogramming because drugs that inhibited DNA polymerase activity effectively blocked pluripotent conversion. These data indicate that nucleotide incorporation is an early and critical event in the epigenetic reprogramming of somatic cells in experimental ESC-heterokaryons.


Asunto(s)
Replicación del ADN , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Linfocitos B/citología , Fusión Celular , Núcleo Celular/metabolismo , Reprogramación Celular , Células Madre Embrionarias/citología , Fibroblastos/citología , Humanos , Ratones , Nucleótidos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
2.
Mol Cell ; 49(6): 1023-33, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23453809

RESUMEN

Genomic imprinting directs the allele-specific marking and expression of loci according to their parental origin. Differential DNA methylation at imprinted control regions (ICRs) is established in gametes and, although largely preserved through development, can be experimentally reset by fusing somatic cells with embryonic germ cell (EGC) lines. Here, we show that the Ten-Eleven Translocation proteins Tet1 and Tet2 participate in the efficient erasure of imprints in this model system. The fusion of B cells with EGCs initiates pluripotent reprogramming, in which rapid re-expression of Oct4 is accompanied by an accumulation of 5-hydroxymethylcytosine (5hmC) at several ICRs. Tet2 was required for the efficient reprogramming capacity of EGCs, whereas Tet1 was necessary to induce 5-methylcytosine oxidation specifically at ICRs. These data show that the Tet1 and Tet2 proteins have discrete roles in cell-fusion-mediated pluripotent reprogramming and imprint erasure in somatic cells.


Asunto(s)
Fusión Celular , Proteínas de Unión al ADN/fisiología , Impresión Genómica , Proteínas Proto-Oncogénicas/fisiología , 5-Metilcitosina/análogos & derivados , Animales , Linfocitos B/citología , Secuencia de Bases , Línea Celular , Citosina/análogos & derivados , Citosina/metabolismo , Metilación de ADN , Dioxigenasas , Células Madre Embrionarias/citología , Expresión Génica , Células Germinativas/citología , Proteínas Fluorescentes Verdes/biosíntesis , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Ratones , Datos de Secuencia Molecular , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas/genética , Proteínas/metabolismo , ARN Largo no Codificante/genética , Análisis de Secuencia de ADN
3.
Sci Adv ; 10(9): eadl3188, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416817

RESUMEN

Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Animales , Histonas/genética , Mamíferos/genética , Ciclo Celular , Células Madre , Proteínas del Grupo Polycomb , Histona Metiltransferasas , Diferenciación Celular , Cromatina
4.
Nat Commun ; 14(1): 180, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635295

RESUMEN

The potential of pluripotent cells to respond to developmental cues and trigger cell differentiation is enhanced during the G1 phase of the cell cycle, but the molecular mechanisms involved are poorly understood. Variations in polycomb activity during interphase progression have been hypothesized to regulate the cell-cycle-phase-dependent transcriptional activation of differentiation genes during lineage transition in pluripotent cells. Here, we show that recruitment of Polycomb Repressive Complex 1 (PRC1) and associated molecular functions, ubiquitination of H2AK119 and three-dimensional chromatin interactions, are enhanced during S and G2 phases compared to the G1 phase. In agreement with the accumulation of PRC1 at target promoters upon G1 phase exit, cells in S and G2 phases show firmer transcriptional repression of developmental regulator genes that is drastically perturbed upon genetic ablation of the PRC1 catalytic subunit RING1B. Importantly, depletion of RING1B during retinoic acid stimulation interferes with the preference of mouse embryonic stem cells (mESCs) to induce the transcriptional activation of differentiation genes in G1 phase. We propose that incremental enrolment of polycomb repressive activity during interphase progression reduces the tendency of cells to respond to developmental cues during S and G2 phases, facilitating activation of cell differentiation in the G1 phase of the pluripotent cell cycle.


Asunto(s)
Histonas , Células Madre Pluripotentes , Complejo Represivo Polycomb 1 , Animales , Ratones , Diferenciación Celular/genética , Cromatina/genética , Histonas/metabolismo , Interfase , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Células Madre Pluripotentes/citología
5.
Cell Death Dis ; 14(6): 357, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301844

RESUMEN

Pediatric Acute Myeloid Leukemia (AML) is a rare and heterogeneous disease characterized by a high prevalence of gene fusions as driver mutations. Despite the improvement of survival in the last years, about 50% of patients still experience a relapse. It is not possible to improve prognosis only with further intensification of chemotherapy, as come with a severe cost to the health of patients, often resulting in treatment-related death or long-term sequels. To design more effective and less toxic therapies we need a better understanding of pediatric AML biology. The NUP98-KDM5A chimeric protein is exclusively found in a particular subgroup of young pediatric AML patients with complex karyotypes and poor prognosis. In this study, we investigated the impact of NUP98-KDM5A expression on cellular processes in human Pluripotent Stem Cell models and a patient-derived cell line. We found that NUP98-KDM5A generates genomic instability through two complementary mechanisms that involve accumulation of DNA damage and direct interference of RAE1 activity during mitosis. Overall, our data support that NUP98-KDM5A promotes genomic instability and likely contributes to malignant transformation.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Humanos , Niño , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Oncogénicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Inestabilidad Genómica , Proteína 2 de Unión a Retinoblastoma/metabolismo
6.
J Cell Biol ; 176(2): 133-9, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17210949

RESUMEN

Interphase nuclear repositioning of chromosomes has been implicated in the epigenetic regulation of RNA polymerase (pol) II transcription. However, little is known about the nuclear position-dependent regulation of RNA pol I-transcribed loci. Trypanosoma brucei is an excellent model system to address this question because its two main surface protein genes, procyclin and variant surface glycoprotein (VSG), are transcribed by pol I and undergo distinct transcriptional activation or downregulation events during developmental differentiation. Although the monoallelically expressed VSG locus is exclusively localized to an extranucleolar body in the bloodstream form, in this study, we report that nonmutually exclusive procyclin genes are located at the nucleolar periphery. Interestingly, ribosomal DNA loci and pol I transcription activity are restricted to similar perinucleolar positions. Upon developmental transcriptional downregulation, however, the active VSG promoter selectively undergoes a rapid and dramatic repositioning to the nuclear envelope. Subsequently, the VSG promoter region was subjected to chromatin condensation. We propose a model whereby the VSG expression site pol I promoter is selectively targeted by temporal nuclear repositioning during developmental silencing.


Asunto(s)
Posicionamiento de Cromosoma , Silenciador del Gen , Regiones Promotoras Genéticas/genética , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Amanitinas/farmacología , Animales , Diferenciación Celular/genética , Línea Celular , Nucléolo Celular/química , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , ADN Ribosómico/genética , Nucleótidos de Desoxiuracil/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Glicoproteínas de Membrana/genética , Membrana Nuclear/metabolismo , Proteínas Protozoarias/genética , ARN Polimerasa I/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/efectos de los fármacos , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/crecimiento & desarrollo
7.
Oncogene ; 41(28): 3611-3624, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35680984

RESUMEN

Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial-mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Diferenciación Celular , Línea Celular Tumoral , Plasticidad de la Célula/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas del Grupo Polycomb
8.
EMBO Rep ; 10(3): 252-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19165144

RESUMEN

In the protozoan parasite Trypanosoma brucei, the two main surface glycoprotein genes are transcribed by RNA polymerase I (pol I) instead of RNA pol II, the polymerase committed to the production of mRNA in eukaryotes. This unusual feature might be accomplished by the recruitment of specific subunits or cofactors that allow pol I to transcribe protein-coding RNAs. Here, we report that transcription mediated by pol I requires TbRPB7, a dissociable subunit of the pol II complex. TbRPB7 was found to interact with two pol I-specific subunits, TbRPA1 and TbRPB6z. Pol I-specific transcription was affected on depletion of TbRPB7 in run-on assays, whereas recombinant TbRPB7 increased transcription driven by a pol I promoter. These results represent a unique example of a functional RNA polymerase chimaera consisting of a core pol I complex that recruits a specific pol II subunit.


Asunto(s)
Subunidades de Proteína/metabolismo , Proteínas Protozoarias/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa I/metabolismo , Transcripción Genética , Trypanosoma brucei brucei/enzimología , Animales , Núcleo Celular/metabolismo , Genes Reporteros , Subunidades de Proteína/genética , Proteínas Protozoarias/genética , Interferencia de ARN , ARN Polimerasa I/genética , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética
9.
Nat Genet ; 53(7): 1036-1049, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34183853

RESUMEN

CpG islands (CGIs) represent a widespread feature of vertebrate genomes, being associated with ~70% of all gene promoters. CGIs control transcription initiation by conferring nearby promoters with unique chromatin properties. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance is barely known. Here we show that oCGIs are an essential component of poised enhancers that augment their long-range regulatory activity and control the responsiveness of their target genes. Using a knock-in strategy in mouse embryonic stem cells, we introduced poised enhancers with or without oCGIs within topologically associating domains harboring genes with different types of promoters. Analysis of the resulting cell lines revealed that oCGIs act as tethering elements that promote the physical and functional communication between poised enhancers and distally located genes, particularly those with large CGI clusters in their promoters. Therefore, by acting as genetic determinants of gene-enhancer compatibility, CGIs can contribute to gene expression control under both physiological and potentially pathological conditions.


Asunto(s)
Islas de CpG , Metilación de ADN , Elementos de Facilitación Genéticos , Epigénesis Genética , Regulación de la Expresión Génica , Animales , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Técnicas de Sustitución del Gen , Ratones , Regiones Promotoras Genéticas
10.
Sci Adv ; 6(10): eaay4768, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32181346

RESUMEN

When self-renewing pluripotent cells receive a differentiation signal, ongoing cell duplication needs to be coordinated with entry into a differentiation program. Accordingly, transcriptional activation of lineage specifier genes and cell differentiation is confined to the G1 phase of the cell cycle by unknown mechanisms. We found that Polycomb repressive complex 2 (PRC2) subunits are differentially recruited to lineage specifier gene promoters across cell cycle in mouse embryonic stem cells (mESCs). Jarid2 and the catalytic subunit Ezh2 are markedly accumulated at target promoters during S and G2 phases, while the transcriptionally activating subunits EPOP and EloB are enriched during G1 phase. Fluctuations in the recruitment of PRC2 subunits promote changes in RNA synthesis and RNA polymerase II binding that are compromised in Jarid2 -/- mESCs. Overall, we show that differential recruitment of PRC2 subunits across cell cycle enables the establishment of a chromatin state that facilitates the induction of cell differentiation in G1 phase.


Asunto(s)
Ciclo Celular/genética , Cromatina/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/genética , Animales , Diferenciación Celular , Línea Celular Transformada , Cromatina/metabolismo , Elonguina/genética , Elonguina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Complejo Represivo Polycomb 2/deficiencia , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal , Transcripción Genética
11.
Life Sci Alliance ; 3(5)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284355

RESUMEN

Mammals optimize their physiology to the light-dark cycle by synchronization of the master circadian clock in the brain with peripheral clocks in the rest of the tissues of the body. Circadian oscillations rely on a negative feedback loop exerted by the molecular clock that is composed by transcriptional activators Bmal1 and Clock, and their negative regulators Period and Cryptochrome. Components of the molecular clock are expressed during early development, but onset of robust circadian oscillations is only detected later during embryogenesis. Here, we have used naïve pluripotent mouse embryonic stem cells (mESCs) to study the role of Bmal1 during early development. We found that, compared to wild-type cells, Bmal1-/- mESCs express higher levels of Nanog protein and altered expression of pluripotency-associated signalling pathways. Importantly, Bmal1-/- mESCs display deficient multi-lineage cell differentiation capacity during the formation of teratomas and gastrula-like organoids. Overall, we reveal that Bmal1 regulates pluripotent cell differentiation and propose that the molecular clock is an hitherto unrecognized regulator of mammalian development.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción ARNTL/fisiología , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Retroalimentación Fisiológica/fisiología , Expresión Génica/genética , Células Madre Pluripotentes Inducidas/citología , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Circadianas Period/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transcripción Genética
12.
Sci Rep ; 9(1): 8140, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31148571

RESUMEN

Recent technical advances highlight that to understand mammalian development and human disease we need to consider transcriptional and epigenetic cell-to-cell differences within cell populations. This is particularly important in key areas of biomedicine like stem cell differentiation and intratumor heterogeneity. The recently developed nucleosome occupancy and methylome (NOMe) assay facilitates the simultaneous study of DNA methylation and nucleosome positioning on the same DNA strand. NOMe-treated DNA can be sequenced by sanger (NOMe-PCR) or high throughput approaches (NOMe-seq). NOMe-PCR provides information for a single locus at the single molecule while NOMe-seq delivers genome-wide data that is usually interrogated to obtain population-averaged measures. Here, we have developed a bioinformatic tool that allow us to easily obtain locus-specific information at the single molecule using genome-wide NOMe-seq datasets obtained from bulk populations. We have used NOMePlot to study mouse embryonic stem cells and found that polycomb-repressed bivalent gene promoters coexist in two different epigenetic states, as defined by the nucleosome binding pattern detected around their transcriptional start site.


Asunto(s)
Biología Computacional/métodos , Metilación de ADN , Nucleosomas/genética , Reconocimiento de Normas Patrones Automatizadas , Animales , Islas de CpG , Células Madre Embrionarias/citología , Epigénesis Genética , Genoma Humano , Humanos , Internet , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Programas Informáticos , Sitio de Iniciación de la Transcripción
13.
Trends Microbiol ; 15(6): 263-70, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17481901

RESUMEN

The influence of nuclear architecture on the regulation of developmental gene expression has recently become evident in many organisms ranging from yeast to humans. During interphase, chromosomes and nuclear structures are in constant motion; therefore, correct temporal association is needed to meet the requirements of gene expression. Trypanosoma brucei is an excellent model system in which to analyze nuclear spatial implications in the regulation of gene expression because the two main surface-protein genes (procyclin and VSG) are transcribed by the highly compartmentalized RNA polymerase I and undergo distinct transcriptional activation or downregulation during developmental differentiation. Furthermore, the infective bloodstream form of the parasite undergoes antigenic variation, displaying sequentially different types of VSG by allelic exclusion. Here, we discuss recent advances in understanding the role of chromosomal nuclear positioning in the regulation of gene expression in T. brucei.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Expresión Génica , Trypanosoma brucei brucei/genética , Alelos , Animales , Variación Antigénica , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas/metabolismo , Espacio Intranuclear , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Polimerasa I/fisiología , Telómero/genética , Transcripción Genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
14.
Clin Cancer Res ; 24(22): 5697-5709, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30012564

RESUMEN

Purpose: On the basis of the identified stress-independent cellular functions of activating transcription factor 4 (ATF4), we reported enhanced ATF4 levels in MCF10A cells treated with TGFß1. ATF4 is overexpressed in patients with triple-negative breast cancer (TNBC), but its impact on patient survival and the underlying mechanisms remain unknown. We aimed to determine ATF4 effects on patients with breast cancer survival and TNBC aggressiveness, and the relationships between TGFß and ATF4. Defining the signaling pathways may help us identify a cell signaling-tailored gene signature.Experimental Design: Patient survival data were determined by Kaplan-Meier analysis. Relationship between TGFß and ATF4, their effects on aggressiveness (tumor proliferation, metastasis, and stemness), and the underlying pathways were analyzed in three TNBC cell lines and in vivo using patient-derived xenografts (PDX).Results: ATF4 overexpression correlated with TNBC patient survival decrease and a SMAD-dependent crosstalk between ATF4 and TGFß was identified. ATF4 expression inhibition reduced migration, invasiveness, mammosphere-forming efficiency, proliferation, epithelial-mesenchymal transition, and antiapoptotic and stemness marker levels. In PDX models, ATF4 silencing decreased metastases, tumor growth, and relapse after chemotherapy. ATF4 was shown to be active downstream of SMAD2/3/4 and mTORC2, regulating TGFß/SMAD and mTOR/RAC1-RHOA pathways independently of stress. We defined an eight-gene signature with prognostic potential, altered in 45% of 2,509 patients with breast cancer.Conclusions: ATF4 may represent a valuable prognostic biomarker and therapeutic target in patients with TNBC, and we identified a cell signaling pathway-based gene signature that may contribute to the development of combinatorial targeted therapies for breast cancer. Clin Cancer Res; 24(22); 5697-709. ©2018 AACR.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Factor de Transcripción Activador 4/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Biología Computacional/métodos , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Pronóstico , ARN Interferente Pequeño/genética , Transcriptoma , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/mortalidad
15.
Cell Rep ; 12(4): 573-86, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26190104

RESUMEN

Jarid2 is part of the Polycomb Repressor complex 2 (PRC2) responsible for genome-wide H3K27me3 deposition. Unlike other PRC2-deficient embryonic stem cells (ESCs), however, Jarid2-deficient ESCs show a severe differentiation block, altered colony morphology, and distinctive patterns of deregulated gene expression. Here, we show that Jarid2(-/-) ESCs express constitutively high levels of Nanog but reduced PCP signaling components Wnt9a, Prickle1, and Fzd2 and lowered ß-catenin activity. Depletion of Wnt9a/Prickle1/Fzd2 from wild-type ESCs or overexpression of Nanog largely phenocopies these cellular defects. Co-culture of Jarid2(-/-) with wild-type ESCs restores variable Nanog expression and ß-catenin activity and can partially rescue the differentiation block of mutant cells. In addition, we show that ESCs lacking Jarid2 or Wnt9a/Prickle1/Fzd2 or overexpressing Nanog induce multiple ICM formation when injected into normal E3.5 blastocysts. These data describe a previously unrecognized role for Jarid2 in regulating a core pluripotency and Wnt/PCP signaling circuit that is important for ESC differentiation and for pre-implantation development.


Asunto(s)
Blastocisto/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones , Proteína Homeótica Nanog , Complejo Represivo Polycomb 2/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
16.
Trends Cell Biol ; 21(2): 74-80, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21074441

RESUMEN

Methylation of histone tails is believed to be important for the establishment and inheritance of gene expression programs during development. Jarid2/Jumonji is the founding member of a family of chromatin modifiers with histone demethylase activity. Although Jarid2 contains amino acid substitutions that are thought to abolish its catalytic activity, it is essential for the development of multiple organs in mice. Recent studies have shown that Jarid2 is a component of the polycomb repressive complex 2 and is required for embryonic stem (ES) cell differentiation. Here, we discuss current literature on the function of Jarid2 and hypothesize that defects resulting from Jarid2 deficiency arise from a failure to correctly prime genes in ES cells that are required for later stages in development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Histona Demetilasas/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Células Madre Embrionarias/citología , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Alineación de Secuencia
17.
Cell Stem Cell ; 6(6): 547-56, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20569692

RESUMEN

Embryonic stem cells (ESCs) are pluripotent, self-renewing, and have the ability to reprogram differentiated cell types to pluripotency upon cellular fusion. Polycomb-group (PcG) proteins are important for restraining the inappropriate expression of lineage-specifying factors in ESCs. To investigate whether PcG proteins are required for establishing, rather than maintaining, the pluripotent state, we compared the ability of wild-type, PRC1-, and PRC2-depleted ESCs to reprogram human lymphocytes. We show that ESCs lacking either PRC1 or PRC2 are unable to successfully reprogram B cells toward pluripotency. This defect is a direct consequence of the lack of PcG activity because it could be efficiently rescued by reconstituting PRC2 activity in PRC2-deficient ESCs. Surprisingly, the failure of PRC2-deficient ESCs to reprogram somatic cells is functionally dominant, demonstrating a critical requirement for PcG proteins in the chromatin-remodeling events required for the direct conversion of differentiated cells toward pluripotency.


Asunto(s)
Linfocitos B/metabolismo , Células Madre Embrionarias/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Represoras/metabolismo , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Linfocitos B/patología , Fusión Celular , Línea Celular Transformada , Reprogramación Celular/genética , Células Madre Embrionarias/patología , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Células Madre Pluripotentes Inducidas/patología , Ratones , Células Madre Neoplásicas/patología , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Proteínas Represoras/genética , Telomerasa/biosíntesis , Telomerasa/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
18.
Nat Cell Biol ; 12(6): 618-24, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20473294

RESUMEN

Polycomb Repressor Complexes (PRCs) are important regulators of embryogenesis. In embryonic stem (ES) cells many genes that regulate subsequent stages in development are enriched at their promoters for PRC1, PRC2 and Ser 5-phosphorylated RNA Polymerase II (RNAP), and contain domains of 'bivalent' chromatin (enriched for H3K4me3; histone H3 di- or trimethylated at Lys 4 and H3K27me3; histone H3 trimethylated at Lys 27). Loss of individual PRC components in ES cells can lead to gene de-repression and to unscheduled differentiation. Here we show that Jarid2 is a novel subunit of PRC2 that is required for the co-recruitment of PRC1 and RNAP to genes that regulate development in ES cells. Jarid2-deficient ES cells showed reduced H3K4me2/me3 and H3K27me3 marking and PRC1/PRC2 recruitment, and did not efficiently establish Ser 5-phosporylated RNAP at target genes. ES cells lacking Jarid2, in contrast to previously characterized PRC1 and PRC2 mutants, did not inappropriately express PRC2 target genes. Instead, they show a severely compromised capacity for successful differentiation towards neural or mesodermal fates and failed to correctly initiate lineage-specific gene expression in vitro. Collectively, these data indicate that transcriptional priming of bivalent genes in pluripotent ES cells is Jarid2-dependent, and suggests that priming is critical for subsequent multi-lineage differentiation.


Asunto(s)
Cromatina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas/metabolismo , ARN Polimerasa II/metabolismo , Diferenciación Celular/genética , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes/metabolismo , Proteínas/genética , ARN Polimerasa II/genética
19.
J Cell Biol ; 186(2): 243-54, 2009 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-19635842

RESUMEN

Antigenic variation allows Trypanosoma brucei to evade the host immune response by switching the expression of 1 out of approximately 15 telomeric variant surface glycoprotein (VSG) expression sites (ESs). VSG ES transcription is mediated by RNA polymerase I in a discrete nuclear site named the ES body (ESB). However, nothing is known about how the monoallelic VSG ES transcriptional state is maintained over generations. In this study, we show that during S and G2 phases and early mitosis, the active VSG ES locus remains associated with the single ESB and exhibits a delay in the separation of sister chromatids relative to control loci. This delay is dependent on the cohesin complex, as partial knockdown of cohesin subunits resulted in premature separation of sister chromatids of the active VSG ES. Cohesin depletion also prompted transcriptional switching from the active to previously inactive VSG ESs. Thus, in addition to maintaining sister chromatid cohesion during mitosis, the cohesin complex plays an essential role in the correct epigenetic inheritance of the active transcriptional VSG ES state.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Transcripción Genética , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Animales , Variación Antigénica , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Sustancias Macromoleculares/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Telómero/metabolismo , Trypanosoma brucei brucei/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA