Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 85(7): 3315-29, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21248030

RESUMEN

We found that recircularized high-risk (type 16 and 18) and low-risk mucosal (type 6b and 11) and cutaneous (type 5 and 8) human papillomavirus (HPV) genomes replicate readily when delivered into U2OS cells by electroporation. The replication efficiency is dependent on the amount of input HPV DNA and can be followed for more than 3 weeks in proliferating cell culture without selection. Cotransfection of recircularized HPV genomes with a linear G418 resistance marker plasmid has allowed subcloning of cell lines, which, in a majority of cases, carry multicopy episomal HPV DNA. Analysis of the HPV DNA status in these established cell lines showed that HPV genomes exist in these cells as stable extrachromosomal oligomers. When the cell lines were cultivated as confluent cultures, a 3- to 10-fold amplification of the HPV genomes per cell was induced. Two-dimensional (2D) agarose gel electrophoresis confirmed amplification of mono- and oligomeric HPV genomes in these confluent cell cultures. Amplification occurred as a result of the initiation of semiconservative two-dimensional replication from one active origin in the HPV oligomer. Our data suggest that the system described here might be a valuable, cost-effective, and efficient tool for use in HPV DNA replication studies, as well as for the design of cell-based assays to identify potential inhibitors of all stages of HPV genome replication.


Asunto(s)
Membrana Mucosa/virología , Papillomaviridae/fisiología , Infecciones por Papillomavirus/virología , Piel/virología , Replicación Viral , Línea Celular , ADN Circular/genética , Electroforesis en Gel de Agar , Electroforesis en Gel Bidimensional , Electroporación , Genoma Viral , Humanos , Papillomaviridae/aislamiento & purificación , Factores de Tiempo , Cultivo de Virus/métodos
2.
Front Bioeng Biotechnol ; 10: 815393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237577

RESUMEN

The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production. Non-thermal plasma (NTP) is a decontamination technique with documented efficiency against select bacterial and fungal pathogens combined with low damage to exposed materials. We have investigated NTP for decontamination of high-efficiency P3 R filters from viral respiratory pathogens in comparison to other commonly used techniques. We show that NTP treatment completely inactivates SARS-CoV-2 and three other common human respiratory viruses including Influenza A, Rhinovirus and Adenovirus, revealing an efficiency comparable to 90°C dry heat or UVC light. Unlike some of the tested techniques (e.g., autoclaving), NTP neither influenced the filtering efficiency nor the microstructure of the filter. We demonstrate that NTP is a powerful and economic technology for efficient decontamination of protective filters and other sensitive materials from different respiratory pathogens.

3.
PLoS Pathog ; 5(4): e1000397, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19390600

RESUMEN

In HPV-related cancers, the "high-risk" human papillomaviruses (HPVs) are frequently found integrated into the cellular genome. The integrated subgenomic HPV fragments express viral oncoproteins and carry an origin of DNA replication that is capable of initiating bidirectional DNA re-replication in the presence of HPV replication proteins E1 and E2, which ultimately leads to rearrangements within the locus of the integrated viral DNA. The current study indicates that the E1- and E2-dependent DNA replication from the integrated HPV origin follows the "onion skin"-type replication mode and generates a heterogeneous population of replication intermediates. These include linear, branched, open circular, and supercoiled plasmids, as identified by two-dimensional neutral-neutral gel-electrophoresis. We used immunofluorescence analysis to show that the DNA repair/recombination centers are assembled at the sites of the integrated HPV replication. These centers recruit viral and cellular replication proteins, the MRE complex, Ku70/80, ATM, Chk2, and, to some extent, ATRIP and Chk1 (S317). In addition, the synthesis of histone gammaH2AX, which is a hallmark of DNA double strand breaks, is induced, and Chk2 is activated by phosphorylation in the HPV-replicating cells. These changes suggest that the integrated HPV replication intermediates are processed by the activated cellular DNA repair/recombination machinery, which results in cross-chromosomal translocations as detected by metaphase FISH. We also confirmed that the replicating HPV episomes that expressed the physiological levels of viral replication proteins could induce genomic instability in the cells with integrated HPV. We conclude that the HPV replication origin within the host chromosome is one of the key factors that triggers the development of HPV-associated cancers. It could be used as a starting point for the "onion skin"-type of DNA replication whenever the HPV plasmid exists in the same cell, which endangers the host genomic integrity during the initial integration and after the de novo infection.


Asunto(s)
Genoma Humano , Inestabilidad Genómica , Papillomaviridae/genética , Integración Viral , Replicación Viral , Replicación del ADN , Proteínas de Unión al ADN/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Proteínas Oncogénicas Virales/genética , Origen de Réplica , Translocación Genética , Proteínas Virales/genética
4.
Curr Biol ; 31(11): 2418-2428.e8, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33798427

RESUMEN

In animal cells, the functions of the microtubule cytoskeleton are coordinated by centriole-based centrosomes via γ-tubulin complexes embedded in the pericentriolar material or PCM.1 PCM assembly has been best studied in the context of mitosis, where centriolar SPD-2 recruits PLK-1, which in turn phosphorylates key scaffolding components like SPD-5 and CNN to promote expansion of the PCM polymer.2-4 To what extent these mechanisms apply to centrosomes in interphase or in differentiated cells remains unclear.5 Here, we examine a novel type of centrosome found at the ciliary base of C. elegans sensory neurons, which we show plays important roles in neuronal morphogenesis, cellular trafficking, and ciliogenesis. These centrosomes display similar dynamic behavior to canonical, mitotic centrosomes, with a stable PCM scaffold and dynamically localized client proteins. Unusually, however, they are not organized by centrioles, which degenerate early in terminal differentiation.6 Yet, PCM not only persists but continues to grow with key scaffolding proteins including SPD-5 expressed under control of the RFX transcription factor DAF-19. This assembly occurs in the absence of the mitotic regulators SPD-2, AIR-1 and PLK-1, but requires tethering by PCMD-1, a protein which also plays a role in the initial, interphase recruitment of PCM in early embryos.7 These results argue for distinct mechanisms for mitotic and non-mitotic PCM assembly, with only the former requiring PLK-1 phosphorylation to drive rapid expansion of the scaffold polymer.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Aurora Quinasa A , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Centriolos , Centrosoma , Humanos , Mitosis , Polímeros , Proteínas Serina-Treonina Quinasas/genética
5.
Dev Cell ; 50(3): 355-366.e6, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31303441

RESUMEN

Centrosomes, the predominant sites of microtubule nucleation and anchorage, coordinate spindle assembly and cell division in animal cells. At the onset of mitosis, centrioles accumulate microtubule-organizing pericentriolar material (PCM) in a process termed centrosome maturation. To what extent centrosome maturation depends on the continued activity of mitotic regulators or the presence of centrioles has hitherto been unclear. Using the C. elegans early embryo, we show that PCM expansion requires the Polo-like kinase PLK-1 and CEP192 (SPD-2 in C. elegans), but not its upstream regulator Aurora A (AIR-1), while maintenance of the PCM polymer depends exclusively on PLK-1. SPD-2 and PLK-1 are highly concentrated at centrioles. Unexpectedly, laser microsurgery reveals that while centrioles are required for PCM recruitment and centrosome structural integrity they are dispensable for PCM maintenance. We propose a model whereby centrioles promote centrosome maturation by recruiting PLK-1, but subsequent maintenance occurs via PLK-1 acting directly within the PCM.


Asunto(s)
Centriolos/metabolismo , Mitosis , Animales , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila melanogaster , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Dev Cell ; 45(2): 212-225.e7, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689196

RESUMEN

Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis.


Asunto(s)
Animales Modificados Genéticamente/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Segregación Cromosómica , Cromosomas/genética , Profase Meiótica I/genética , Lámina Nuclear/patología , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Núcleo Celular/patología , Emparejamiento Cromosómico , Citoplasma , Regulación de la Expresión Génica , Membrana Nuclear/genética , Membrana Nuclear/patología , Lámina Nuclear/genética , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA