Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Genes Dev ; 32(3-4): 309-320, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29491137

RESUMEN

Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 Å. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1R1074H and PHF5AY36C The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, we validate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5AR38C mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.


Asunto(s)
Compuestos Epoxi/química , Macrólidos/química , Fosfoproteínas/química , Factores de Empalme de ARN/química , Empalme del ARN/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Microscopía por Crioelectrón , Modelos Moleculares , Mutación , Fosfoproteínas/aislamiento & purificación , Precursores del ARN/metabolismo , Factores de Empalme de ARN/aislamiento & purificación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Transactivadores
2.
Biochemistry ; 62(14): 2147-2160, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37403936

RESUMEN

Werner syndrome protein (WRN) is a multifunctional enzyme with helicase, ATPase, and exonuclease activities that are necessary for numerous DNA-related transactions in the human cell. Recent studies identified WRN as a synthetic lethal target in cancers characterized by genomic microsatellite instability resulting from defects in DNA mismatch repair pathways. WRN's helicase activity is essential for the viability of these high microsatellite instability (MSI-H) cancers and thus presents a therapeutic opportunity. To this end, we developed a multiplexed high-throughput screening assay that monitors exonuclease, ATPase, and helicase activities of full-length WRN. This screening campaign led to the discovery of 2-sulfonyl/sulfonamide pyrimidine derivatives as novel covalent inhibitors of WRN helicase activity. The compounds are specific for WRN versus other human RecQ family members and show competitive behavior with ATP. Examination of these novel chemical probes established the sulfonamide NH group as a key driver of compound potency. One of the leading compounds, H3B-960, showed consistent activities in a range of assays (IC50 = 22 nM, KD = 40 nM, KI = 32 nM), and the most potent compound identified, H3B-968, has inhibitory activity IC50 ∼ 10 nM. These kinetic properties trend toward other known covalent druglike molecules. Our work provides a new avenue for screening WRN for inhibitors that may be adaptable to different therapeutic modalities such as targeted protein degradation, as well as a proof of concept for the inhibition of WRN helicase activity by covalent molecules.


Asunto(s)
Neoplasias , Síndrome de Werner , Humanos , Exodesoxirribonucleasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Inestabilidad de Microsatélites , Helicasa del Síndrome de Werner/metabolismo
3.
J Biol Chem ; 298(11): 102539, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179791

RESUMEN

Recent studies have reported that the peroxisome proliferator-activated receptor gamma (PPARγ) pathway is activated in approximately 40% of patients with muscle-invasive bladder cancer. This led us to investigate pharmacological repression of PPARγ as a possible intervention strategy. Here, we characterize PPARγ antagonists and inverse agonists and find that the former behave as silent ligands, whereas inverse agonists (T0070907 and SR10221) repress downstream PPARγ target genes leading to growth inhibition in bladder cancer cell lines. To understand the mechanism, we determined the ternary crystal structure of PPARγ bound to T0070907 and the corepressor (co-R) peptide NCOR1. The structure shows that the AF-2 helix 12 (H12) rearranges to bind inside the ligand-binding domain, where it forms stabilizing interactions with the compound. This dramatic movement in H12 unveils a large interface for co-R binding. In contrast, the crystal structure of PPARγ bound to a SR10221 analog shows more subtle structural differences, where the compound binds and pushes H12 away from the ligand-binding domain to allow co-R binding. Interestingly, we found that both classes of compound promote recruitment of co-R proteins in biochemical assays but with distinct conformational changes in H12. We validate our structural models using both site-directed mutagenesis and chemical probes. Our findings offer new mechanistic insights into pharmacological modulation of PPARγ signaling.


Asunto(s)
PPAR gamma , Neoplasias de la Vejiga Urinaria , Humanos , PPAR gamma/metabolismo , Ligandos , Benzamidas/farmacología
4.
Subcell Biochem ; 96: 409-432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252738

RESUMEN

In this chapter, the essential role of the SF3b multi-protein complex will be discussed in the context of the overall spliceosome. SF3b is critical during spliceosome assembly for recognition of the branch point (BP) adenosine and, by de facto, selection of the 3' splice site. This complex is highly dynamic, undergoing significant conformational changes upon loading of the branch duplex RNA and in its relative positioning during spliceosomal remodeling from the A, pre-B, B, Bact and B* complexes. Ultimately, during the spliceosome activation phase, SF3b must be displaced to unmask the branch point adenosine for the first splicing reaction to occur. In certain cancers, such as the hematological malignancies CML, CLL and MDS, the SF3b subunit SF3B1 is frequently mutated. Recent studies suggest these mutations lead to inappropriate branch point selection and mis-splicing events that appear to be drivers of disease. Finally, the SF3b complex is the target for at least three different classes of natural product-based inhibitors. These inhibitors bind in the BP adenosine-binding pocket and demonstrate a pre-mRNA competitive mechanism of action resulting in either intron retention or exon skipping. These compounds are extremely useful as chemical probes to isolate and characterize early stages of spliceosome assembly. They are also being explored preclinically and clinically as possible agents for hematological cancers.


Asunto(s)
Productos Biológicos/farmacología , Complejos Multiproteicos/antagonistas & inhibidores , Empalmosomas/química , Empalmosomas/efectos de los fármacos , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Complejos Multiproteicos/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Empalmosomas/genética , Empalmosomas/metabolismo
5.
J Biol Chem ; 294(45): 16966-16977, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31582562

RESUMEN

DNMT3A (DNA methyltransferase 3A) is a de novo DNA methyltransferase responsible for establishing CpG methylation patterns within the genome. DNMT3A activity is essential for normal development, and its dysfunction has been linked to developmental disorders and cancer. DNMT3A is frequently mutated in myeloid malignancies with the majority of mutations occurring at Arg-882, where R882H mutations are most frequent. The R882H mutation causes a reduction in DNA methyltransferase activity and hypomethylation at differentially-methylated regions within the genome, ultimately preventing hematopoietic stem cell differentiation and leading to leukemogenesis. Although the means by which the R882H DNMT3A mutation reduces enzymatic activity has been the subject of several studies, the precise mechanism by which this occurs has been elusive. Herein, we demonstrate that in the context of the full-length DNMT3A protein, the R882H mutation stabilizes the formation of large oligomeric DNMT3A species to reduce the overall DNA methyltransferase activity of the mutant protein as well as the WT-R882H complex in a dominant-negative manner. This shift in the DNMT3A oligomeric equilibrium and the resulting reduced enzymatic activity can be partially rescued in the presence of oligomer-disrupting DNMT3L, as well as DNMT3A point mutations along the oligomer-forming interface of the catalytic domain. In addition to modulating the oligomeric state of DNMT3A, the R882H mutation also leads to a DNA-binding defect, which may further reduce enzymatic activity. These findings provide a mechanistic explanation for the observed loss of DNMT3A activity associated with the R882H hot spot mutation in cancer.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Mutación , Multimerización de Proteína , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína
6.
Bioorg Med Chem Lett ; 28(8): 1336-1341, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29559278

RESUMEN

The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).


Asunto(s)
Quinasa de la Caseína II/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Pirazinas/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Pirazinas/síntesis química , Pirazinas/química , Pirazinas/farmacocinética , Relación Estructura-Actividad
7.
Bioorg Med Chem Lett ; 25(24): 5743-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546219

RESUMEN

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZeneca's collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


Asunto(s)
Centrosoma/metabolismo , Ftalazinas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Administración Oral , Animales , Sitios de Unión , Células CACO-2 , Centrosoma/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Células HeLa , Humanos , Microsomas/metabolismo , Conformación Molecular , Simulación de Dinámica Molecular , Ftalazinas/administración & dosificación , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Estructura Terciaria de Proteína , Ratas , Tanquirasas/antagonistas & inhibidores , Tanquirasas/metabolismo
8.
Nature ; 446(7134): 449-53, 2007 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-17377583

RESUMEN

Vitamin B12 (cobalamin) is among the largest known non-polymeric natural products, and the only vitamin synthesized exclusively by microorganisms. The biosynthesis of the lower ligand of vitamin B(12), 5,6-dimethylbenzimidazole (DMB), is poorly understood. Recently, we discovered that a Sinorhizobium meliloti gene, bluB, is necessary for DMB biosynthesis. Here we show that BluB triggers the unprecedented fragmentation and contraction of the bound flavin mononucleotide cofactor and cleavage of the ribityl tail to form DMB and D-erythrose 4-phosphate. Our structural analysis shows that BluB resembles an NAD(P)H-flavin oxidoreductase, except that its unusually tight binding pocket accommodates flavin mononucleotide but not NAD(P)H. We characterize crystallographically an early intermediate along the reaction coordinate, revealing molecular oxygen poised over reduced flavin. Thus, BluB isolates and directs reduced flavin to activate molecular oxygen for its own cannibalization. This investigation of the biosynthesis of DMB provides clarification of an aspect of vitamin B12 that was otherwise incomplete, and may contribute to a better understanding of vitamin B12-related disease.


Asunto(s)
Bencimidazoles/metabolismo , FMN Reductasa/metabolismo , Mononucleótido de Flavina/metabolismo , Sinorhizobium meliloti/enzimología , Vitamina B 12/biosíntesis , Vitamina B 12/química , Bencimidazoles/química , Sitios de Unión , Catálisis , FMN Reductasa/química , FMN Reductasa/genética , Mononucleótido de Flavina/química , Genes Bacterianos/genética , Ligandos , Modelos Moleculares , Mutación/genética , Oxidación-Reducción , Oxígeno/metabolismo , Conformación Proteica , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo
9.
Biochem J ; 446(3): 405-13, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22721802

RESUMEN

GlmU is a bifunctional enzyme with acetyltransferase and uridyltransferase activities, and is essential for the biosynthesis of the bacterial cell wall. Inhibition results in a loss of cell viability. GlmU is therefore considered a potential target for novel antibacterial agents. A HTS (high-throughput screen) identified a series of aminoquinazolines with submicromolar potency against the uridyltransferase reaction. Biochemical and biophysical characterization showed competition with UTP binding. We determined the crystal structure of a representative aminoquinazoline bound to the Haemophilus influenzae isoenzyme at a resolution of 2.0 Å. The inhibitor occupies part of the UTP site, skirts the outer perimeter of the GlcNAc1-P (N-acetylglucosamine-1-phosphate) pocket and anchors a hydrophobic moiety into a lipophilic pocket. Our SAR (structure-activity relationship) analysis shows that all of these interactions are essential for inhibitory activity in this series. The crystal structure suggests that the compound would block binding of UTP and lock GlmU in an apo-enzyme-like conformation, thus interfering with its enzymatic activity. Our lead generation effort provides ample scope for further optimization of these compounds for antibacterial drug discovery.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Acetiltransferasas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Pared Celular , Cristalografía por Rayos X , Haemophilus influenzae/enzimología , Haemophilus influenzae/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Nucleotidiltransferasas/química , Quinazolinas/química , Quinazolinas/metabolismo , Relación Estructura-Actividad , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo
10.
Bioorg Med Chem Lett ; 22(4): 1690-4, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22264476

RESUMEN

A series of structurally unique Smac mimetics that act as antagonists of inhibitor of apoptosis proteins (IAPs) has been discovered. While most previously described Smac mimetics contain the proline ring (or a similar cyclic motif) found in Smac, a key feature of the compounds described herein is that this ring has been removed. Despite this, compounds in this series potently bind to cIAP1 and elicit the expected phenotype of cIAP1 inhibition in cancer cells. Marked selectivity for cIAP1 over XIAP is observed for these compounds, which is attributed to a slight difference in the binding groove between the two proteins and the resulting steric interactions with the inhibitors. XIAP binding can be improved by constraining the inhibitor so that these unfavorable steric interactions are minimized.


Asunto(s)
Aminas/síntesis química , Diseño de Fármacos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Mitocondriales/química , Piperidinas/síntesis química , Aminas/química , Aminas/farmacología , Proteínas Reguladoras de la Apoptosis , Biomimética , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular , Piperidinas/química , Piperidinas/farmacología , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad
11.
Bioorg Med Chem Lett ; 22(5): 2063-9, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22305584

RESUMEN

The design, synthesis and biological evaluation of a series of azabenzimidazole derivatives as TBK1/IKKε kinase inhibitors are described. Starting from a lead compound 1a, iterative design and SAR exploitation of the scaffold led to analogues with nM enzyme potencies against TBK1/IKKε. These compounds also exhibited excellent cellular activity against TBK1. Further structure-based design to improve selectivity over CDK2 and Aurora B resulted in compounds such as 5b-e. These probe compounds will facilitate study of the complex cancer biology of TBK1 and IKKε.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Quinasa I-kappa B/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Aurora Quinasa B , Aurora Quinasas , Compuestos Aza/química , Compuestos Aza/farmacología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Diseño de Fármacos , Células HEK293 , Humanos , Quinasa I-kappa B/metabolismo , Modelos Moleculares , Neoplasias/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad
12.
Nat Commun ; 12(1): 4491, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301950

RESUMEN

Intron selection during the formation of prespliceosomes is a critical event in pre-mRNA splicing. Chemical modulation of intron selection has emerged as a route for cancer therapy. Splicing modulators alter the splicing patterns in cells by binding to the U2 snRNP (small nuclear ribonucleoprotein)-a complex chaperoning the selection of branch and 3' splice sites. Here we report crystal structures of the SF3B module of the U2 snRNP in complex with spliceostatin and sudemycin FR901464 analogs, and the cryo-electron microscopy structure of a cross-exon prespliceosome-like complex arrested with spliceostatin A. The structures reveal how modulators inactivate the branch site in a sequence-dependent manner and stall an E-to-A prespliceosome intermediate by covalent coupling to a nucleophilic zinc finger belonging to the SF3B subunit PHF5A. These findings support a mechanism of intron recognition by the U2 snRNP as a toehold-mediated strand invasion and advance an unanticipated drug targeting concept.


Asunto(s)
ADN/genética , Intrones/genética , Piranos/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Compuestos de Espiro/metabolismo , Empalmosomas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Humanos , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Piranos/química , Pironas/química , Pironas/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Compuestos de Espiro/química , Empalmosomas/ultraestructura
13.
ACS Med Chem Lett ; 12(1): 93-98, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33488969

RESUMEN

Fibroblast growth factor receptors (FGFR) 2 and 3 have been established as drivers of numerous types of cancer with multiple drugs approved or entering late stage clinical trials. A limitation of current inhibitors is vulnerability to gatekeeper resistance mutations. Using a combination of targeted high-throughput screening and structure-based drug design, we have developed a series of aminopyrazole based FGFR inhibitors that covalently target a cysteine residue on the P-loop of the kinase. The inhibitors show excellent activity against the wild-type and gatekeeper mutant versions of the enzymes. Further optimization using SAR analysis and structure-based drug design led to analogues with improved potency and drug metabolism and pharmacokinetics properties.

14.
ACS Med Chem Lett ; 11(6): 1305-1309, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32551016

RESUMEN

Carbamoyl phosphate synthetase 1 (CPS1) is a potential synthetic lethal target in LKB1-deficient nonsmall cell lung cancer, where its overexpression supports the production of pyrimidine synthesis. In other cancer types, CPS1 overexpression and activity may prevent the accumulation of toxic levels of intratumoral ammonia to support tumor growth. Herein we report the discovery of a novel series of potent and selective small-molecule inhibitors of CPS1. Piperazine 2 was initially identified as a promising CPS1 inhibitor through a high-throughput screening effort. Subsequent structure-activity relationship optimization and structure-based drug design led to the discovery of piperazine H3B-616 (25), a potent allosteric inhibitor of CPS1 (IC50 = 66 nM).

15.
Cell Chem Biol ; 27(3): 259-268.e5, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32017919

RESUMEN

Carbamoyl phosphate synthetase 1 (CPS1) catalyzes the first step in the ammonia-detoxifying urea cycle, converting ammonia to carbamoyl phosphate under physiologic conditions. In cancer, CPS1 overexpression supports pyrimidine synthesis to promote tumor growth in some cancer types, while in others CPS1 activity prevents the buildup of toxic levels of intratumoral ammonia to allow for sustained tumor growth. Targeted CPS1 inhibitors may, therefore, provide a therapeutic benefit for cancer patients with tumors overexpressing CPS1. Herein, we describe the discovery of small-molecule CPS1 inhibitors that bind to a previously unknown allosteric pocket to block ATP hydrolysis in the first step of carbamoyl phosphate synthesis. CPS1 inhibitors are active in cellular assays, blocking both urea synthesis and CPS1 support of the pyrimidine biosynthetic pathway, while having no activity against CPS2. These newly discovered CPS1 inhibitors are a first step toward providing researchers with valuable tools for probing CPS1 cancer biology.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Piperidinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Tiazoles/farmacología , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Piperidinas/química , Bibliotecas de Moléculas Pequeñas/química , Tiazoles/química
16.
Structure ; 15(3): 355-62, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17355870

RESUMEN

Members of the XMAP215/Dis1 family of microtubule-associated proteins (MAPs) are essential for microtubule growth. MAPs in this family contain several 250 residue repeats, called TOG domains, which are thought to bind tubulin dimers and promote microtubule polymerization. We have determined the crystal structure of a single TOG domain from the Caenorhabditis elegans homolog, Zyg9, to 1.9 A resolution, and from it we describe a structural blueprint for TOG domains. These domains are flat, paddle-like structures, composed of six HEAT-repeat elements stacked side by side. The two wide faces of the paddle contain the HEAT-repeat helices, and the two narrow faces, the intra- and inter-HEAT repeat turns. Solvent-exposed residues in the intrarepeat turns are conserved, both within a particular protein and across the XMAP215/Dis1 family. Mutation of some of these residues in the TOG1 domain from the budding yeast homolog, Stu2p, shows that this face indeed participates in the tubulin contact.


Asunto(s)
Secuencia Conservada , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada/genética , Cristalografía por Rayos X , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
17.
Structure ; 14(6): 1003-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16765893

RESUMEN

The Ndc80 complex, a kinetochore component conserved from yeast to humans, is essential for proper chromosome alignment and segregation during mitosis. It is an approximately 570 A long, rod-shaped assembly of four proteins--Ndc80p (Hec1), Nuf2p, Spc24p, and Spc25p--with globular regions at either end of a central shaft. The complex bridges from the centromere-proximal inner kinetochore layer at its Spc24/Spc25 globular end to the microtubule binding outer kinetochore layer at its Ndc80/Nuf2 globular end. We report the atomic structures of the Spc24/Spc25 globular domain, determined both by X-ray crystallography at 1.9 A resolution and by NMR. Spc24 and Spc25 fold tightly together into a single globular entity with pseudo-2-fold symmetry. Conserved residues line a common hydrophobic core and the bottom of a cleft, indicating that the functional orthologs from other eukaryotes will have the same structure and suggesting a docking site for components of the inner kinetochore.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Cinetocoros , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Cinetocoros/química , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
18.
ACS Med Chem Lett ; 7(3): 300-5, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26985319

RESUMEN

The Wnt pathway is an evolutionarily conserved and tightly regulated signaling network with important roles in embryonic development and adult tissue regeneration. Impaired Wnt pathway regulation, arising from mutations in Wnt signaling components, such as Axin, APC, and ß-catenin, results in uncontrolled cell growth and triggers oncogenesis. To explore the reported link between CK2 kinase activity and Wnt pathway signaling, we sought to identify a potent, selective inhibitor of CK2 suitable for proof of concept studies in vivo. Starting from a pyrazolo[1,5-a]pyrimidine lead (2), we identified compound 7h, a potent CK2 inhibitor with picomolar affinity that is highly selectivity against other kinase family enzymes and inhibits Wnt pathway signaling (IC50 = 50 nM) in DLD-1 cells. In addition, compound 7h has physicochemical properties that are suitable for formulation as an intravenous solution, has demonstrated good pharmacokinetics in preclinical species, and exhibits a high level of activity as a monotherapy in HCT-116 and SW-620 xenografts.

19.
J Med Chem ; 59(24): 11079-11097, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28002961

RESUMEN

Protein lysine methyltransferases (KMTs) have emerged as important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from the cofactor S-adenosylmethionine to specific acceptor lysine residues on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate an array of nonhistone proteins, suggesting additional mechanisms by which they influence cellular physiology. SMYD2 is reported to be an oncogenic methyltransferase that represses the functional activity of the tumor suppressor proteins p53 and RB. HTS screening led to identification of five distinct substrate-competitive chemical series. Determination of liganded crystal structures of SMYD2 contributed significantly to "hit-to-lead" design efforts, culminating in the creation of potent and selective inhibitors that were used to understand the functional consequences of SMYD2 inhibition. Taken together, these results have broad implications for inhibitor design against KMTs and clearly demonstrate the potential for developing novel therapies against these enzymes.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células HCT116 , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
J Mol Biol ; 344(4): 885-92, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15544799

RESUMEN

Bub3 is one of at least six proteins that transmit the spindle assembly checkpoint signal. These proteins delay cell cycle progression from metaphase to anaphase in response to attachment defects between kinetochores and spindle microtubules and to tension defects between sister chromatids. To explore the molecular interactions mediated by Bub3, we have determined the crystal structure of the Saccharomyces cerevisiae protein Bub3p at 2.35 A resolution. Bub3p is a seven-blade beta-propeller, although its sequence diverges from that of other WD40 family members. Several loops are substantially elongated, but extra domains or insertions are not present at the termini. In particular, two extended loops project from the top face of the propeller, forming a cleft. Amino acid residues across the top face and one aspect of the lateral surface (spanning blades 5-6) are highly conserved among Bub3 proteins. We propose that these conserved surfaces are the loci for key interactions with conserved motifs in spindle checkpoint proteins Bub1 and Mad3/BubR1. Comparison of the Bub3 sequence to the WD40 protein, Rae1, shows high sequence conservation along the same surfaces. Rae1 interaction with Bub1 is, therefore, likely to involve a similar mode of binding.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Asociadas a Matriz Nuclear/química , Proteínas de Complejo Poro Nuclear , Proteínas de Transporte Nucleocitoplasmático/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA