Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 110(15): 157401, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25167310

RESUMEN

Inelastic neutron scattering measurements of individual phonon lifetimes and dispersion at 295 and 1200 K have been used to probe anharmonicity and thermal conductivity in UO2. They show that longitudinal optic phonon modes carry the largest amount of heat, in contrast to past simulations and that the total conductivity demonstrates a quantitative correspondence between microscopic and macroscopic phonon physics. We have further performed first-principles simulations for UO2 showing semiquantitative agreement with phonon lifetimes at 295 K, but larger anharmonicity than measured at 1200 K.

2.
Ultramicroscopy ; 103(3): 199-204, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15850707

RESUMEN

The results from an emerging method of nondestructive grain boundary characterization, with unprecedented sensitivity to neighbor-grain misorientation and grain boundary morphology are reported. The method utilizes differential aperture X-ray microscopy to determine the local crystallographic orientation of submicron volumes within polycrystalline materials. Initial measurements are described for a recrystallized Ni sample where the grain boundary type was identified at 85 grain boundaries within the framework of an ideal coincident site lattice (CSL) model. The remarkable resolution of this method is demonstrated by the <0.03 degrees deviations of misorientation measured for Sigma3 (twin) boundaries. Because of its high angular and spatial resolution, this new approach to grain boundary characterization can provide quantitative tests of grain boundary models with new insights for grain boundary engineering efforts.

3.
Nat Mater ; 5(8): 619-22, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16845413

RESUMEN

The distribution of elastic strains (and thus stresses) at the submicrometre length scale within deformed metal single crystals has remarkably broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behaviour within individual grains, the transport of dislocations through such structures, changes in mechanical properties that occur during reverse loading (for example, sheet-metal forming and fatigue), and the analyses of diffraction line profiles for microstructural studies of these phenomena. We present the first direct, spatially resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <001> axes. Broad distributions of elastic strains are found, with important implications for theories of dislocation structure evolution, dislocation transport, and the extraction of dislocation parameters from X-ray line profiles.

4.
Nat Mater ; 2(7): 487-92, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12792647

RESUMEN

The crystallographic texture of thin-film coatings plays an essential role in determining such diverse materials properties as wear resistance, recording density in magnetic media and electrical transport in superconductors. Typically, X-ray pole figures provide a macroscopically averaged description of texture, and electron backscattering provides spatially resolved surface measurements. In this study, we have used focused, polychromatic synchrotron X-ray microbeams to penetrate multilayer materials and simultaneously characterize the local structure, orientation and strain tensor of different heteroepitaxial layers with submicrometre resolution. Grain-by-grain microstructural studies of cerium oxide films grown on textured nickel foils reveal two distinct kinetic growth regimes on vicinal surfaces: ledge growth at elevated temperatures and island growth at lower temperatures. In addition, a combinatorial approach reveals that crystallographic tilting associated with these complex interfaces is qualitatively described by a simple geometrical model applicable to brittle films on ductile substrates. The sensitivity of conducting percolation paths to tilt-induced texture improvement is demonstrated.


Asunto(s)
Óxidos/química , Cerio/química , Cristalografía por Rayos X , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA