Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ann Neurol ; 96(1): 1-20, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38568026

RESUMEN

Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.


Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Esclerosis Múltiple , Humanos , Biomarcadores/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo , Recurrencia
2.
Brain ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045667

RESUMEN

The interaction between ageing and multiple sclerosis is complex and carries significant implications for patient care. Managing multiple sclerosis effectively requires an understanding of how ageing and multiple sclerosis impact brain structure and function. Ageing inherently induces brain changes, including reduced plasticity, diminished grey matter volume, and ischaemic lesion accumulation. When combined with multiple sclerosis pathology, these age-related alterations may worsen clinical disability. Ageing may also influence the response of multiple sclerosis patients to therapies and/or their side-effects, highlighting the importance of adjusted treatment considerations. Magnetic resonance MRI is highly sensitive to age- and multiple sclerosis-related processes. Accordingly, MRI can provide insights into the relationship between ageing and multiple sclerosis, enabling a better understanding of their pathophysiological interplay and informing treatment selection. This review summarizes current knowledge on the immuno-pathological and MRI aspects of ageing in the central nervous system in the context of multiple sclerosis. Starting from immunosenescence, ageing-related pathological mechanisms, and specific features like enlarged Virchow-Robin spaces, this review then explores clinical aspects, including late-onset multiple sclerosis, the influence of age on diagnostic criteria, and comorbidity effects on imaging features. The role of MRI in understanding neurodegeneration, iron dynamics, and myelin changes influenced by ageing and how MRI can contribute to defining treatment effects in ageing multiple sclerosis patients, are also discussed.

3.
J Neuroinflammation ; 21(1): 34, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279130

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease characterized by motor deficits and cognitive decline. Many immune aspects of the disease are understood through studies in the experimental autoimmune encephalomyelitis (EAE) model, including the contribution of the NF-κB transcription factor to neuroinflammation. However, the cell-specific roles of NF-κB to EAE and its cognitive comorbidities still needs further investigation. We have previously shown that the myeloid cell NF-κB plays a role in the healthy brain by exerting homeostatic regulation of neuronal excitability and synaptic plasticity and here we investigated its role in EAE. METHODS: We used constitutive MφIKKßΚΟ mice, in which depletion of IKKß, the main activating kinase of NF-κB, was global to CNS and peripheral macrophages, and ΜgΙΚΚßKO mice, in which depletion was inducible and specific to CNS macrophages by 28 days after tamoxifen administration. We subjected these mice to MOG35-55 induced EAE and cuprizone-induced demyelination. We measured pathology by immunohistochemistry, investigated molecular mechanisms by RNA sequencing analysis and studied neuronal functions by in vivo electrophysiology in awake animals. RESULTS: Global depletion of IKKß from myeloid cells in MφIKKßΚΟ mice accelerated the onset and significantly supressed chronic EAE. Knocking out IKKß only from CNS resident macrophages accelerated the onset and exacerbated chronic EAE, accompanied by earlier demyelination and immune cell infiltration but had no effect in cuprizone-induced demyelination. Peripheral T cell effector functions were not affected by myeloid cell deletion of IKKß, but CNS resident mechanisms, such as microglial activation and neuronal hyperexcitability were altered from early in EAE. Lastly, depletion of myeloid cell IKKß resulted in enhanced late long-term potentiation in EAE. CONCLUSIONS: IKKß-mediated activation of NF-κΒ in myeloid cells has opposing roles in EAE depending on the cell type and the disease stage. In CNS macrophages it is protective while in peripheral macrophages it is disease-promoting and acts mainly during chronic disease. Although clinically protective, CNS myeloid cell IKKß deletion dysregulates neuronal excitability and synaptic plasticity in EAE. These effects of IKKß on brain cognitive abilities deserve special consideration when therapeutic interventions that inhibit NF-κB are used in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Cuprizona , Macrófagos/metabolismo , Gravedad del Paciente , Ratones Endogámicos C57BL , Microglía/metabolismo
4.
Acta Neuropathol ; 147(1): 31, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310187

RESUMEN

Anti-glial fibrillary acidic protein (GFAP) meningoencephalomyelitis (autoimmune GFAP astrocytopathy) is a new autoimmune central nervous system (CNS) disease diagnosable by the presence of anti-GFAP autoantibodies in the cerebrospinal fluid and presents as meningoencephalomyelitis in the majority of patients. Only few neuropathological reports are available and little is known about the pathogenic mechanisms. We performed a histopathological study of two autopsies and nine CNS biopsies of patients with anti-GFAP autoantibodies and found predominantly a lymphocytic and in one autopsy case a granulomatous inflammatory phenotype. Inflammatory infiltrates were composed of B and T cells, including tissue-resident memory T cells. Although obvious astrocytic damage was absent in the GFAP-staining, we found cytotoxic T cell-mediated reactions reflected by the presence of CD8+/perforin+/granzyme A/B+ cells, polarized towards astrocytes. MHC-class-I was upregulated in reactive astrocytes of all biopsies and two autopsies but not in healthy controls. Importantly, we observed a prominent immunoreactivity of astrocytes with the complement factor C4d. Finally, we provided insight into an early phase of GFAP autoimmunity in an autopsy of a pug dog encephalitis that was characterized by marked meningoencephalitis with selective astrocytic damage with loss of GFAP and AQP4 in the lesions.Our histopathological findings indicate that a cytotoxic T cell-mediated immune reaction is present in GFAP autoimmunity. Complement C4d deposition on astrocytes could either represent the cause or consequence of astrocytic reactivity. Selective astrocytic damage is prominent in the early phase of GFAP autoimmunity in a canine autopsy case, but mild or absent in subacute and chronic stages in human disease, probably due to the high regeneration potential of astrocytes. The lymphocytic and granulomatous phenotypes might reflect different stages of lesion development or patient-specific modifications of the immune response. Future studies will be necessary to investigate possible implications of pathological subtypes for clinical disease course and therapeutic strategies.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalomielitis , Meningoencefalitis , Humanos , Animales , Perros , Proteína Ácida Fibrilar de la Glía/metabolismo , Encefalomielitis/patología , Astrocitos/patología , Enfermedades Autoinmunes del Sistema Nervioso/líquido cefalorraquídeo , Enfermedades Autoinmunes del Sistema Nervioso/terapia , Meningoencefalitis/líquido cefalorraquídeo , Meningoencefalitis/patología , Autoanticuerpos
6.
Brain Pathol ; 34(5): e13240, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38254312

RESUMEN

Activation of Bruton's tyrosine kinase (BTK) has been shown to play a crucial role in the proinflammatory response of B cells and myeloid cells upon engagement with B cell, Fc, Toll-like receptor, and distinct chemokine receptors. Previous reports suggest BTK actively contributes to the pathogenesis of multiple sclerosis (MS). The BTK inhibitor Evobrutinib has been shown to reduce the numbers of gadolinium-enhancing lesions and relapses in relapsing-remitting MS patients. In vitro, BTK inhibition resulted in reduced phagocytic activity and modulated BTK-dependent inflammatory signaling of microglia and macrophages. Here, we investigated the protein expression of BTK and CD68 as well as iron accumulation in postmortem control (n = 10) and MS (n = 23) brain tissue, focusing on microglia and macrophages. MS cases encompassed active, chronic active, and inactive lesions. BTK+ and iron+ cells positively correlated across all regions of interests and, along with CD68, revealed highest numbers in the center of active and at the rim of chronic active lesions. We then studied the effect of BTK inhibition in the human immortalized microglia-like HMC3 cell line in vitro. In particular, we loaded HMC3 cells with iron-dextran and subsequently administered the BTK inhibitor Evobrutinib. Iron treatment alone induced a proinflammatory phenotype and increased the expression of iron importers as well as the intracellular iron storage protein ferritin light chain (FTL). BTK inhibition of iron-laden cells dampened the expression of microglia-related inflammatory genes as well as iron-importers, whereas the iron-exporter ferroportin was upregulated. Our data suggest that BTK inhibition not only dampens the proinflammatory response but also reduces iron import and storage in activated microglia and macrophages with possible implications on microglial iron accumulation in chronic active lesions in MS.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Hierro , Esclerosis Múltiple , Humanos , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Hierro/metabolismo , Masculino , Femenino , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Persona de Mediana Edad , Adulto , Células Mieloides/metabolismo , Células Mieloides/patología , Encéfalo/metabolismo , Encéfalo/patología , Anciano , Microglía/metabolismo , Microglía/patología , Macrófagos/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Pirimidinas/farmacología , Piperidinas
7.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200293, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39133885

RESUMEN

OBJECTIVES: In myelin oligodendrocyte glycoprotein IgG-associated disease (MOGAD) and aquaporin-4 IgG+ neuromyelitis optica spectrum disorder (AQP4+NMOSD), the autoantibodies are mainly composed of IgG1, and complement-dependent cytotoxicity is a primary pathomechanism in AQP4+NMOSD. We aimed to evaluate the CSF complement activation in MOGAD. METHODS: CSF-C3a, CSF-C4a, CSF-C5a, and CSF-C5b-9 levels during the acute phase before treatment in patients with MOGAD (n = 12), AQP4+NMOSD (n = 11), multiple sclerosis (MS) (n = 5), and noninflammatory neurologic disease (n = 2) were measured. RESULTS: CSF-C3a and CSF-C5a levels were significantly higher in MOGAD (mean ± SD, 5,629 ± 1,079 pg/mL and 2,930 ± 435.8 pg/mL) and AQP4+NMOSD (6,017 ± 3,937 pg/mL and 2,544 ± 1,231 pg/mL) than in MS (1,507 ± 1,286 pg/mL and 193.8 ± 0.53 pg/mL). CSF-C3a, CSF-C4a, and CSF-C5a did not differ between MOGAD and AQP4+NMOSD while CSF-C5b-9 (membrane attack complex, MAC) levels were significantly lower in MOGAD (17.4 ± 27.9 ng/mL) than in AQP4+NMOSD (62.5 ± 45.1 ng/mL, p = 0.0019). Patients with MOGAD with severer attacks (Expanded Disability Status Scale [EDSS] ≥ 3.5) had higher C5b-9 levels (34.0 ± 38.4 ng/m) than those with milder attacks (EDSS ≤3.0, 0.9 ± 0.7 ng/mL, p = 0.044). DISCUSSION: The complement pathway is activated in both MOGAD and AQP4+NMOSD, but MAC formation is lower in MOGAD, particularly in those with mild attacks, than in AQP4+NMOSD. These findings may have pathogenetic and therapeutic implications in MOGAD.


Asunto(s)
Acuaporina 4 , Activación de Complemento , Inmunoglobulina G , Glicoproteína Mielina-Oligodendrócito , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/líquido cefalorraquídeo , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/sangre , Acuaporina 4/inmunología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Glicoproteína Mielina-Oligodendrócito/inmunología , Inmunoglobulina G/líquido cefalorraquídeo , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Autoanticuerpos/líquido cefalorraquídeo , Autoanticuerpos/sangre , Anciano , Complemento C5a/líquido cefalorraquídeo , Complemento C5a/metabolismo , Complemento C5a/inmunología , Adulto Joven , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/inmunología , Complemento C3a/metabolismo , Complemento C3a/líquido cefalorraquídeo , Complemento C3a/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/líquido cefalorraquídeo , Complejo de Ataque a Membrana del Sistema Complemento/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA