Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 25(19): 23424-23436, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-29041643

RESUMEN

Scanning X-ray fluorescence tomography was once considered impractical due to prohibitive measurement time requirements but is now common for investigating metal distributions within small systems. A recent look-ahead to the possibilities of 4th-generation synchrotron light sources [J. Synchrotron. Radiat. 21, 1031 (2014)] raised the possibility of a spiral-scanning measurement scheme where motion overheads are almost completely eliminated. Here we demonstrate the spiral scanning measurement and use Fourier ring correlation analysis to interrogate sources of resolution degradation. We develop an extension to the Fourier ring correlation formalism that enables direct determination of resolution from the measured sinogram data, greatly enhancing its power as a diagnostic tool for computed tomography.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 675-695, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762978

RESUMEN

In statistics, the index of dispersion (or variance-to-mean ratio) is unity (σ2/〈x〉 = 1) for a Poisson-distributed process with variance σ2 for a variable x that manifests as unit increments. Where x is a measure of some phenomenon, the index takes on a value proportional to the quanta that constitute the phenomenon. That outcome might thus be anticipated to apply for an enormously wide variety of applied measurements of quantum phenomena. However, in a photon-energy proportional radiation detector, a set of M witnessed Poisson-distributed measurements {W1, W2,… WM} scaled so that the ideal expectation value of the quantum is unity, is generally observed to give σ2/〈W〉 < 1 because of detector losses as broadly indicated by Fano [Phys. Rev. (1947), 72, 26]. In other cases where there is spectral dispersion, σ2/〈W〉 > 1. Here these situations are examined analytically, in Monte Carlo simulations, and experimentally. The efforts reveal a powerful metric of quanta broadly associated with such measurements, where the extension has been made to polychromatic and lossy situations. In doing so, the index of dispersion's variously established yet curiously overlooked role as a metric of underlying quanta is indicated. The work's X-ray aspects have very diverse utility and have begun to find applications in radiography and tomography, where the ability to extract spectral information from conventional intensity detectors enables a superior level of material and source characterization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA