Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mikrochim Acta ; 190(5): 177, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022500

RESUMEN

According to the latest statistics, more than 537 million people around the world struggle with diabetes and its adverse consequences. As well as acute risks of hypo- or hyper- glycemia, long-term vascular complications may occur, including coronary heart disease or stroke, as well as diabetic nephropathy leading to end-stage disease, neuropathy or retinopathy. Therefore, there is an urgent need to improve diabetes management to reduce the risk of complications but also to improve patient's quality life. The impact of continuous glucose monitoring (CGM) is well recognized, in this regard. The current review aims at introducing the basic principles of glucose sensing, including electrochemical and optical detection, summarizing CGM technology, its requirements, advantages, and disadvantages. The role of CGM systems in the clinical diagnostics/personal testing, difficulties in their utilization, and recommendations are also discussed. In the end, challenges and prospects in future CGM systems are discussed and non-invasive, wearable glucose biosensors are introduced. Though the scope of this review is CGMs and provides information about medical issues and analytical principles, consideration of broader use will be critical in future if the right systems are to be selected for effective diabetes management.


Asunto(s)
Glucemia , Diabetes Mellitus , Humanos , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus/diagnóstico , Glucosa
2.
Langmuir ; 34(18): 5193-5203, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29648828

RESUMEN

We propose in this work a stepwise approach to construct photoelectrodes. This takes advantage of the self-assembly interactions between thiol with a gold surface and terpyridine ligands with first-row transition metals. Here, a [Ru(bpy)3]2+ photosensitive center bearing a free terpyridine group has been used to construct two linear dyads on gold (Au/[ZnII-RuII]4+ and Au/[CoIII-RuII]5+). The stepwise construction was characterized by electrochemistry, quartz crystal microbalance, and atomic force microscopy imaging. The results show that the dyads behave as rigid layers and are inhomogeneously distributed on the surface. The surface coverages are estimated to be in the order of 10-11 mol cm-2. The kinetics of the heterogeneous electron transfer is determined on modified gold ball microelectrodes using Laviron's formula. The oxidation rates of the terminal Ru(II) subunits are estimated to be 700 and 2300 s-1 for Au/[ZnII-RuII]4+ and Au/[CoIII-RuII]5+, respectively. In the latter case, the rate is limited by the kinetics of electron transfer between an intermediate Co(II) center and the gold surface. For Au/[ZnII-RuII]4+, the Zn-bis-terpyridine center is not involved in the electron-transfer process and the oxidation of the Ru(II) subunit occurs through a superexchange process. In the presence of a tertiary amine in solution, the electrodes at a bias of 0.12 V behave as photoanodes when subjected to visible light irradiation. The magnitude of the photocurrent is around 10 µA cm-2 for Au/[CoIII-RuII]5+ and 5 µA cm-2 for Au/[ZnII-RuII]4+, proving the importance of an electron relay on the photon-to-current conversion. The results suggest an efficient conversion for Au/[CoIII-RuII]5+, since each bound dyad, once excited, injects an electron around 10 times per second.

3.
Chemphyschem ; 15(1): 208-18, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24353114

RESUMEN

Synthesis of conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) polymers is achieved through the radiolysis of N2O-saturated aqueous solutions of 3,4-ethylenedioxythiophene by using two different oxidizing species: HO(·) (hydroxyl) and N3(·) (azide) radicals. Both oxidative species lead to self-assembled polymers that are evidenced in solution by cryotransmission electron microscopy and UV/Vis absorption spectroscopy and, after centrifugation and deposition, by scanning electron microscopy and attenuated total reflectance FTIR techniques. Whereas HO(·) radicals lead to PEDOT-OH globular nanostructures with hydrophilic properties, N3(·) radicals enable the formation of amphiphilic PEDOT-N3 fibrillar nanostructures. These results, which highlight the differences in the intermolecular interaction behaviors of the two kinds of PEDOT polymers, are discussed in terms of polymerization mechanisms.

4.
Chemphyschem ; 13(1): 281-90, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22086719

RESUMEN

Sensitive layers based on conducting homopolymer [poly(3,4-ethylenedioxythiophene), denoted PEDOT] and copolymers [molecularly imprinted and non-imprinted poly(EDOT-co-3-thiophene acetic acid), denoted MICP and NICP, respectively] are electrosynthesized on gold substrates and used for the electrochemical detection of atrazine. These layers are characterized by cyclic voltammetry, ATR-FTIR spectroscopy, optical profilemetry, and AFM microscopy in order to study the effect of the chemical functionalities and of the structural properties of these conducting polymers on the physical chemistry of the interaction with atrazine targets and with the aim to improve the sensitivity of the recognition process. In particular, due to the presence in their backbones of preshaped functionalized cavities which keep the molecular memory of the targets, MICP layers show remarkable sensitivity, a low detection limit (10(-9) mol L(-1)), and a large linear range of detection (10(-8) to 10(-4) mol L(-1)), as demonstrated by square-wave voltammetry.


Asunto(s)
Atrazina/análisis , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Técnicas Electroquímicas , Polímeros/química , Oro/química , Impresión Molecular
5.
ACS Appl Mater Interfaces ; 7(29): 15866-75, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26147828

RESUMEN

The design of more efficient catalytic electrodes remains an important objective for the development of water splitting electrolyzers. In this context a structured composite cathode material has been synthesized by electrodeposition of molybdenum sulfide (MoSx) into a poly(pyrrole-alkylammonium) matrix, previously coated onto carbon electrodes by oxidative electropolymerization of a pyrrole-alkylammonium monomer. The composite material showed an efficient electrocatalytic activity toward proton reduction and the hydrogen evolution reaction (HER). Data from Tafel plots have demonstrated that the electron transfer rate in the composite films is fast, in agreement with the high catalytic activity of this cathode material. Bulk electrolysis of acidic water at carbon foam electrodes modified with the composite have shown that the cathodes display a high catalytic activity and a reasonable operational stability, largely exceeding that of regular amorphous MoSx electrodeposited on naked carbon foam. The enhanced catalytic performances of the composite electrode material were attributed to the structuration of the composite, which led to a homogeneous distribution of the catalyst on the carbon foam network, as shown by SEM characterizations.

6.
ACS Appl Mater Interfaces ; 7(8): 4476-80, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25688728

RESUMEN

The development of photoelectrochemical devices for solar light-driven water splitting and H2 production requires new strategies for the fabrication of materials that combine the necessary photoredox and catalytic properties, to allow the hydrogen evolution reaction (HER) to take place at a low overvoltage under visible light irradiation. We report the first example of a structured composite, synthesized by electrodeposition of MoSx cocatalyst into a photosensitive Ru complex film deposited onto carbon electrodes by electropolymerization of a pyrrole-functionalized Ru(II)(2,2'-bipyridine)3(2+). Composite films show efficient photocatalytic activity for HER. Our study highlights the great simplicity of this versatile electrochemical procedure to synthesize photocathodes.

7.
ACS Appl Mater Interfaces ; 6(15): 12852-9, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25045786

RESUMEN

Nanocomposite anode materials for water oxidation have been readily synthesized by electrodeposition of iridium oxide nanoparticles into poly(pyrrole-alkylammonium) films, previously deposited onto carbon electrodes by oxidative electropolymerization of a pyrrole-alkylammonium monomer. The nanocomposite films were characterized by electrochemistry, transmission electron microscopy, and atomic force microscopy. They showed an efficient electrocatalytic activity toward the oxygen evolution reaction. Data from Tafel plots have demonstrated that the catalytic activity of the iridium oxide nanoparticles is maintained following their inclusion in the polymer matrix. Bulk electrolysis of water at carbon foam modified electrodes have shown that the iridium oxide-polymer composite presents a higher catalytic activity and a better operational stability than regular oxide films.

8.
J Phys Chem B ; 116(5): 1467-81, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22206269

RESUMEN

Starting from thiophene-based functional monomers (FM), namely, TMA, TAA, TMeOH, EDOT, and Th, bonded to atrazine (ATZ) target molecules into FM/ATZ prepolymerization dimers in acetonitrile solutions, differently functionalized molecularly imprinted conducting polymers (FM-MICP) are electrosynthesized and then washed and used as sensitive layers for ATZ recognition. Sensitivity of these layers toward ATZ, which is quantified by cyclic voltammetric measurements, decreases in the following order of functional monomers: TMA, TAA, TMeOH, EDOT, and Th. Absolute values of the FM-ATZ dimerization free energies are calculated with the help of DFT/PCM calculations and of an empirical correction of the entropy effects, using a modified Wertz formula. A strong correlation is found between FM-MICP sensitivity and the amount of FM/ATZ prepolymerization complexes.


Asunto(s)
Atrazina/análisis , Herbicidas/análisis , Impresión Molecular , Polímeros/química , Tiofenos/química , Dimerización , Técnicas Electroquímicas/métodos , Impresión Molecular/métodos , Polimerizacion , Termodinámica
9.
Anal Chim Acta ; 649(2): 236-45, 2009 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19699400

RESUMEN

An original electrochemical sensor based on molecularly imprinted conducting polymer (MICP) is developed, which enables the recognition of a small pesticide target molecule, atrazine. The conjugated MICP, poly(3,4-ethylenedioxythiophene-co-thiophene-acetic acid), has been electrochemically synthesized onto a platinum electrode following two steps: (i) polymerization of comonomers in the presence of atrazine, already associated to the acetic acid substituent through hydrogen bonding, and (ii) removal of atrazine from the resulting polymer, which leaves the acetic acid substituents open for association with atrazine. The obtained sensing MICP is highly specific towards newly added atrazine and the recognition can be quantitatively analyzed by the variation of the cyclic voltammogram of MICP. The developed sensor shows remarkable properties: selectivity towards triazinic family, large range of detection (10(-9) mol L(-1) to 1.5 x 10(-2) mol L(-1) in atrazine) and low detection threshold (10(-7) mol L(-1)).


Asunto(s)
Atrazina/análisis , Técnicas Electroquímicas/métodos , Impresión Molecular/métodos , Plaguicidas/análisis , Polímeros/química , Electrodos , Platino (Metal)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA