Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 20(9): e2307611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863821

RESUMEN

Fullertubes, that is, fullerenes consisting of a carbon nanotube moiety capped by hemifullerene ends, are emerging carbon nanomaterials whose properties show both fullerene and carbon nanotube (CNT) traits. Albeit it may be expected that their electronic states show a certain resemblance to those of the extended nanotube, such a correlation has not yet been found or described. Here it shows a scanning tunneling microscopy (STM) and spectroscopy (STS) characterization of the adsorption, self-assembly, and electronic structure of 2D arrays of [5,5]-C90 fullertube molecules on two different noble metal surfaces, Ag(111) and Au(111). The results demonstrate that the shape of the molecular orbitals of the adsorbed fullertubes corresponds closely to those expected for isolated species on the grounds of density functional theory calculations. Moreover, a comparison between the electronic density profiles in the bands of the extended [5,5]-CNT and in the molecules reveals that some of the frontier orbitals of the fullertube molecules can be described as the result of the quantum confinement imposed by the hemifullerene caps to the delocalized band states in the extended CNT. The results thus provide a conceptual framework for the rational design of custom fullertube molecules and can potentially become a cornerstone in the understanding of these new carbon nanoforms.

2.
Small ; 20(22): e2309555, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155502

RESUMEN

Antiferromagnetic spintronics is a rapidly emerging field with the potential to revolutionize the way information is stored and processed. One of the key challenges in this field is the development of novel 2D antiferromagnetic materials. In this paper, the first on-surface synthesis of a Co-directed metal-organic network is reported in which the Co atoms are strongly antiferromagnetically coupled, while featuring a perpendicular magnetic anisotropy. This material is a promising candidate for future antiferromagnetic spintronic devices, as it combines the advantages of 2D and metal-organic chemistry with strong antiferromagnetic order and perpendicular magnetic anisotropy.

3.
Angew Chem Int Ed Engl ; 63(13): e202318185, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38299925

RESUMEN

The incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings. Their structure and electronic properties were investigated via scanning tunneling microscopy and spectroscopy, complemented by computational investigations. After thermal activation of the precursor P on the Au(111) surface, we detected two major nanographene products. Nanographene Aa-a embeds two azulene units formed through oxidative ring-closure of methyl substituents, while Aa-s contains one azulene unit and one Stone-Wales defect, formed by the combination of oxidative ring-closure and skeletal ring-rearrangement reactions. Aa-a exhibits an antiferromagnetic ground state with the highest magnetic exchange coupling reported up to date for a non-benzenoid containing nanographene, coexisting with side-products with closed shell configurations resulted from the combination of ring-closure and ring-rearragement reactions (Ba-a , Ba-s , Bs-a and Bs-s ). Our results provide insights into the single gold atom assisted synthesis of novel NGs containing non-benzenoid motifs and their tailored electronic/magnetic properties.

4.
J Am Chem Soc ; 145(5): 2968-2974, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36708335

RESUMEN

The design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (A, B, and C) featuring majority zigzag peripheries. Through many-body calculations, we identify a transition from a closed-shell ground state to an open-shell ground state upon an increase of the molecular size. Our predictions indicate that the largest MEC for open-shell NGs occurs in proximity to the transition between closed-shell and open-shell states. Such predictions are corroborated by the on-surface syntheses and structural, electronic, and magnetic characterizations of three NGs (A[3,5], B[4,5], and C[4,3]), which are the smallest open-shell systems in their respective chemical families and are thus located the closest to the transition boundary. Notably, two of the NGs (B[4,5] and C[4,3]) feature record values of MEC (close to 200 meV) measured on the Au(111) surface. Our strategy for maximizing the MEC provides perspectives for designing carbon nanomaterials with robust magnetic ground states.

5.
Chemistry ; 29(30): e202300461, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-36861383

RESUMEN

The design of a well-ordered arrangement of atoms on a solid surface has long been sought due to the envisioned applications in many different fields. On-surface synthesis of metal-organic networks is one of the most promising fabrication techniques. Hierarchical growth, which involves coordinative schemes with weaker interactions, favours the formation of extended areas with the desired complex structure. However, the control of such hierarchical growth is in its infancy, particularly for lanthanide-based architectures. Here the hierarchical growth of a Dy-based supramolecular nanoarchitecture on Au(111) is described. Such an assembly is based on a first hierarchical level of metallo-supramolecular motifs, which in a second level of hierarchy self-assemble through directional hydrogen bonds, giving rise to a periodic two-dimensional supramolecular porous network. Notably, the size of the metal-organic based tecton of the first level of hierarchy can be tailored by modifying the metal-ligand stoichiometric ratio.

6.
Nano Lett ; 22(23): 9283-9289, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36441511

RESUMEN

Controlling the interaction between the excitonic states of a quantum emitter and the plasmonic modes of a nanocavity is key for the development of quantum information processing devices. In this Letter we demonstrate that the tunnel electroluminescence of electrically insulated C60 nanocrystals enclosed in the plasmonic nanocavity at the junction of a scanning tunneling microscope can be switched from a broad emission spectrum, revealing the plasmonic modes of the cavity, to a narrow band emission, displaying only the excitonic states of the C60 molecules by changing the bias voltage applied to the junction. Interestingly, excitonic emission dominates the spectra in the high-voltage region in which the simultaneously acquired inelastic rate is low, demonstrating that the excitons cannot be created by an inelastic tunnel process. These results point toward new possible mechanisms for tunnel electroluminescence of quantum emitters and offer new avenues to develop electrically tunable nanoscale light sources.

7.
Angew Chem Int Ed Engl ; 62(6): e202212395, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445791

RESUMEN

Nanocars are carbon-based single-molecules with a precise design that facilitates their atomic-scale control on a surface. The rational design of these molecules is important in atomic and molecular-scale manipulation to advance the development of molecular machines, as well as for a better understanding of self-assembly, diffusion and desorption processes. Here, we introduce the molecular design and construction of a collection of minimalistic nanocars. They feature an anthracene chassis and four benzene derivatives as wheels. After sublimation and adsorption on an Au(111) surface, we show controlled and fast manipulation of the nanocars along the surface using the tip of a scanning tunneling microscope (STM). The mechanism behind the successful displacement is the induced dipole created over the nanocar by the STM tip. We utilized carbon monoxide functionalized tips both to avoid decomposition and accidentally picking the nanocars up during the manipulation. This strategy allowed thousands of maneuvers to successfully win the Nanocar Race II championship.

8.
J Am Chem Soc ; 144(28): 12725-12731, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35817408

RESUMEN

The synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111). Scanning tunneling microscopy and noncontact atomic force microscopy describe the thermal-activated intra- and intermolecular oxidative ring closure reactions as well as the controlled tip-induced hydrogen dissociation from the porphyrinoid units. In addition, scanning tunneling spectroscopy measurements, complemented by computational investigations, reveal the open-shell character, that is, the antiferromagnetic singlet ground state (S = 0) of the formed polymers, characterized by singlet-triplet inelastic excitations observed between spins of adjacent porphyrinoid units. Our approach sheds light on the crucial relevance of the π-conjugation in the correlations between spins, while expanding the on-surface synthesis toolbox and opening avenues toward the synthesis of innovative functional nanomaterials with prospects in carbon-based spintronics.

9.
J Am Chem Soc ; 144(35): 16034-16041, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36007260

RESUMEN

The design of antiferromagnetic nanomaterials preserving large orbital magnetic moments is important to protect their functionalities against magnetic perturbations. Here, we exploit an archetype H6HOTP species for conductive metal-organic frameworks to design a Co-HOTP one-atom-thick metal-organic architecture on a Au(111) surface. Our multidisciplinary scanning probe microscopy, X-ray absorption spectroscopy, X-ray linear dichroism, and X-ray magnetic circular dichroism study, combined with density functional theory simulations, reveals the formation of a unique network design based on threefold Co+2 coordination with deprotonated ligands, which displays a large orbital magnetic moment with an orbital to effective spin moment ratio of 0.8, an in-plane easy axis of magnetization, and large magnetic anisotropy. Our simulations suggest an antiferromagnetic ground state, which is compatible with the experimental findings. Such a Co-HOTP metal-organic network exemplifies how on-surface chemistry can enable the design of field-robust antiferromagnetic materials.


Asunto(s)
Cobalto , Magnetismo , Anisotropía , Cobalto/química , Ligandos , Metales , Rayos X
10.
Small ; 18(12): e2106407, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064636

RESUMEN

First-row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α-region), while the less abundant is 1Co:1Au coincidental (ß-region). As a result of the surface registry, in the ß-region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip-induced voltage pulses irreversibly transform α- into ß-regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.


Asunto(s)
Cobalto , Nanopartículas , Catálisis , Cobalto/química , Nanopartículas/química , Óxidos/química
11.
Small ; 18(22): e2107073, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35393751

RESUMEN

The design of lanthanide multinuclear networks is an emerging field of research due to the potential of such materials for nanomagnetism, spintronics, and quantum information. Therefore, controlling their electronic and magnetic properties is of paramount importance to tailor the envisioned functionalities. In this work, a multidisciplinary study is presented combining scanning tunneling microscopy, scanning tunneling spectroscopy, X-ray absorption spectroscopy, X-ray linear dichroism, X-ray magnetic circular dichroism, density functional theory, and multiplet calculations, about the supramolecular assembly, electronic and magnetic properties of periodic dinuclear 2D networks based on lanthanide-pyridyl interactions on Au(111). Er- and Dy-directed assemblies feature identical structural architectures stabilized by metal-organic coordination. Notably, despite exhibiting the same +3 oxidation state, there is a shift of the energy level alignment of the unoccupied molecular orbitals between Er- and Dy-directed networks. In addition, there is a reorientation of the easy axis of magnetization and an increment of the magnetic anisotropy when the metallic center is changed from Er to Dy. Thus, the results show that it is feasible to tune the energy level alignment and magnetic anisotropy of a lanthanide-based metal-organic architecture by metal exchange, while preserving the network design.

12.
Nano Lett ; 21(16): 7086-7092, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34152778

RESUMEN

The accurate determination of electronic temperatures in metallic nanostructures is essential for many technological applications, like plasmon-enhanced catalysis or lithographic nanofabrication procedures. In this Letter, we demonstrate that the electronic temperature can be accurately measured by the shape of the tunnel electroluminescence emission edge in tunnel plasmonic nanocavities, which follows a universal thermal distribution with the bias voltage as the chemical potential of the photon population. A significant deviation between electronic and lattice temperatures is found below 30 K for tunnel currents larger than 15 nA. This deviation is rationalized as the result of a two-electron process in which the second electron excites plasmon modes with an energy distribution that reflects the higher temperature following the first tunneling event. These results dispel a long-standing controversy on the nature of overbias emission in tunnel junctions and adds a new method for the determination of electronic temperatures and quasiparticle dynamics.

13.
Angew Chem Int Ed Engl ; 61(23): e202114983, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35170842

RESUMEN

The synthesis of long n-peri-acenes (n-PAs) is challenging as a result of their inherent open-shell radical character, which arises from the presence of parallel zigzag edges beyond a certain n value. They are considered as π-electron model systems to study magnetism in graphene nanostructures; being potential candidates in the fabrication of optoelectronic and spintronic devices. Here, we report the on-surface formation of the largest pristine member of the n-PA family, i.e. peri-heptacene (n=7, 7-PA), obtained on an Au(111) substrate under ultra-high vacuum conditions. Our high-resolution scanning tunneling microscopy investigations, complemented by theoretical simulations, provide insight into the chemical structure of this previously elusive compound. In addition, scanning tunneling spectroscopy reveals the antiferromagnetic open-shell singlet ground state of 7-PA, exhibiting singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 49 meV.

14.
Angew Chem Int Ed Engl ; 60(48): 25551-25556, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34546628

RESUMEN

The atomically precise control over the size, shape and structure of nanographenes (NGs) or the introduction of heteroatom dopants into their sp2 -carbon lattice confer them valuable electronic, optical and magnetic properties. Herein, we report on the design and synthesis of a hexabenzocoronene derivative embedded with graphitic nitrogen in its honeycomb lattice, achieved via on-surface assisted cyclodehydrogenation on the Au(111) surface. Combined scanning tunnelling microscopy/spectroscopy and non-contact atomic force microscopy investigations unveil the chemical and electronic structures of the obtained dicationic NG. Kelvin probe force microscopy measurements reveal a considerable variation of the local contact potential difference toward lower values with respect to the gold surface, indicative of its positive net charge. Altogether, we introduce the concept of cationic nitrogen doping of NGs on surfaces, opening new avenues for the design of novel carbon nanostructures.

15.
Angew Chem Int Ed Engl ; 59(40): 17594-17599, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32592432

RESUMEN

We report on the synthesis and characterization of atomically precise one-dimensional diradical peripentacene polymers on a Au(111) surface. By means of high-resolution scanning probe microscopy complemented by theoretical simulations, we provide evidence of their magnetic properties, which arise from the presence of two unpaired spins at their termini. Additionally, we probe a transition of their magnetic properties related to the length of the polymer. Peripentacene dimers exhibit an antiferromagnetic (S=0) singlet ground state. They are characterized by singlet-triplet spin-flip inelastic excitations with an effective exchange coupling (Jeff ) of 2.5 meV, whereas trimers and longer peripentacene polymers reveal a paramagnetic nature and feature Kondo fingerprints at each terminus due to the unpaired spin. Our work provides access to the precise fabrication of polymers featuring diradical character which are potentially useful in carbon-based optoelectronics and spintronics.

16.
Angew Chem Int Ed Engl ; 58(20): 6559-6563, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-30761719

RESUMEN

Engineering low-band-gap π-conjugated polymers is a growing area in basic and applied research. The main synthetic challenge lies in the solubility of the starting materials, which precludes advancements in the field. Here, we report an on-surface synthesis protocol to overcome such difficulties and produce poly(p-anthracene ethynylene) molecular wires on Au(111). To this aim, a quinoid anthracene precursor with =CBr2 moieties is deposited and annealed to 400 K, resulting in anthracene-based polymers. High-resolution nc-AFM measurements confirm the nature of the ethynylene-bridge bond between the anthracene moieties. Theoretical simulations illustrate the mechanism of the chemical reaction, highlighting three major steps: dehalogenation, diffusion of surface-stabilized carbenes, and homocoupling, which enables the formation of an ethynylene bridge. Our results introduce a novel chemical protocol to design π-conjugated polymers based on oligoacene precursors and pave new avenues for advancing the emerging field of on-surface synthesis.

17.
J Chem Phys ; 142(10): 101930, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25770519

RESUMEN

The deposition of tetracyanoethylene (TCNE) on Ag(111), both at Room Temperature (RT, 300 K) and low temperatures (150 K), leads to the formation of coordination networks involving silver adatoms, as revealed by Variable-Temperature Scanning Tunneling Microscopy. Our results indicate that TCNE molecules etch away material from the step edges and possibly also from the terraces, which facilitates the formation of the observed coordination networks. Moreover, such process is temperature dependent, which allows for different stoichiometric ratios between Ag and TCNE just by adjusting the deposition temperature. X-ray Photoelectron Spectroscopy and Density Functional Theory calculations reveal that charge-transfer from the surface to the molecule and the concomitant geometrical distortions at both sides of the organic/inorganic interface might facilitate the extraction of silver atoms from the step-edges and, thus, its incorporation into the observed TCNE coordination networks.

18.
Nanoscale ; 15(16): 7267-7271, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022670

RESUMEN

The coordination of lanthanides atoms in two-dimensional surface-confined metal-organic networks is a promising path to achieve an ordered array of single atom magnets. These networks are highly versatile with plenty of combinations of molecular linkers and metallic atoms. Notably, with an appropriate choice of molecules and lanthanide atoms it should be feasible to tailor the orientation and intensity of the magnetic anisotropy. However, up to now only tilted and almost in-plane easy axis of magnetizations were reported in lanthanide-based architectures. Here we introduce an Er-directed two-dimensional metallosupramolecular network on Cu(111) featuring strong out-of-plane magnetic anisotropy. Our results will contribute to pave avenues for the use of lanthanides in potential applications in nanomagnetism and spintronics.

19.
Adv Sci (Weinh) ; 9(19): e2200407, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35604199

RESUMEN

On-surface synthesis has recently emerged as a powerful strategy to design conjugated polymers previously precluded in conventional solution chemistry. Here, an N-containing pentacene-based precursor (tetraazapentacene) is ex-professo synthesized endowed with terminal dibromomethylene (:CBr2 ) groups to steer homocoupling via dehalogenation on metallic supports. Combined scanning probe microscopy investigations complemented by theoretical calculations reveal how the substrate selection drives different reaction mechanisms. On Ag(111) the dissociation of bromine atoms at room temperature triggers the homocoupling of tetraazapentacene units together with the binding of silver adatoms to the nitrogen atoms of the monomers giving rise to a N-containing conjugated coordination polymer (P1). Subsequently, P1 undergoes ladderization at 200 °C, affording a pyrrolopyrrole-bridged conjugated polymer (P2). On Au(111) the formation of the intermediate polymer P1 is not observed and, instead, after annealing at 100 °C, the conjugated ladder polymer P2 is obtained, revealing the crucial role of metal adatoms on Ag(111) as compared to Au(111). Finally, on Ag(100) the loss of :CBr2 groups affords the formation of tetraazapentacene monomers, which coexist with polymer P1. Our results contribute to introduce protocols for the synthesis of N-containing conjugated polymers, illustrating the selective role of the metallic support in the underlying reaction mechanisms.

20.
Nanomaterials (Basel) ; 12(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35055243

RESUMEN

The synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (A1, A2 and A3) on the Au(111) surface. A1 and A2 contain two five- and one seven-membered rings within their benzenoid backbone, while A3 incorporates one five-membered ring. Their structures and electronic properties have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy and scanning tunneling spectroscopy complemented with theoretical calculations. Our results provide access to open-shell NGs with a combination of non-benzenoid topologies previously precluded by conventional synthetic procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA