Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 82(8): 1543-1556.e6, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35176233

RESUMEN

Folding of stringent clients requires transfer from Hsp70 to Hsp90. The co-chaperone Hop physically connects the chaperone machineries. Here, we define its role from the remodeling of Hsp70/40-client complexes to the mechanism of client transfer and the conformational switching from stalled to active client-processing states of Hsp90. We show that Hsp70 together with Hsp40 completely unfold a stringent client, the glucocorticoid receptor ligand-binding domain (GR-LBD) in large assemblies. Hop remodels these for efficient transfer onto Hsp90. As p23 enters, Hsp70 leaves the complex via switching between binding sites in Hop. Current concepts assume that to proceed to client folding, Hop dissociates and the co-chaperone p23 stabilizes the Hsp90 closed state. In contrast, we show that p23 functionally interacts with Hop, relieves the stalling Hsp90-Hop interaction, and closes Hsp90. This reaction allows folding of the client and is thus the key regulatory step for the progression of the chaperone cycle.


Asunto(s)
Pliegue de Proteína , Piridinolcarbamato , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Receptores de Glucocorticoides/metabolismo
2.
Mol Cell ; 81(6): 1170-1186.e10, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571422

RESUMEN

The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Factores Inmunológicos/farmacología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Chaperonas Moleculares/metabolismo , Mieloma Múltiple/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Células Tumorales Cultivadas
3.
Mol Cell ; 74(4): 816-830.e7, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31027879

RESUMEN

p53, the guardian of the genome, requires chaperoning by Hsp70 and Hsp90. However, how the two chaperone machineries affect p53 conformation and regulate its function remains elusive. We found that Hsp70, together with Hsp40, unfolds p53 in an ATP-dependent reaction. This unfolded state of p53 is susceptible to aggregation after release induced by the nucleotide exchange factor Bag-1. However, when Hsp90 and the adaptor protein Hop are present, p53 is transferred from Hsp70 to Hsp90, allowing restoration of the native state upon ATP hydrolysis. Our results suggest that the p53 conformation is constantly remodeled by the two major chaperone machineries. This connects p53 activity to stress, and the levels of free molecular chaperones are important factors regulating p53 activity. Together, our findings reveal an intricate interplay and cooperation of Hsp70 and Hsp90 in regulating the conformation of a client.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Conformación Proteica , Proteína p53 Supresora de Tumor/química , Adenosina Trifosfato/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Agregado de Proteínas/genética , Unión Proteica/genética , Pliegue de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
4.
Nat Commun ; 12(1): 828, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547294

RESUMEN

The co-chaperone p23 is a central part of the Hsp90 machinery. It stabilizes the closed conformation of Hsp90, inhibits its ATPase and is important for client maturation. Yet, how this is achieved has remained enigmatic. Here, we show that a tryptophan residue in the proximal region of the tail decelerates the ATPase by allosterically switching the conformation of the catalytic loop in Hsp90. We further show by NMR spectroscopy that the tail interacts with the Hsp90 client binding site via a conserved helix. This helical motif in the p23 tail also binds to the client protein glucocorticoid receptor (GR) in the free and Hsp90-bound form. In vivo experiments confirm the physiological importance of ATPase modulation and the role of the evolutionary conserved helical motif for GR activation in the cellular context.


Asunto(s)
Adenilil Imidodifosfato/química , Proteínas HSP90 de Choque Térmico/química , Chaperonas Moleculares/química , Prostaglandina-E Sintasas/química , Receptores de Glucocorticoides/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenilil Imidodifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Nat Commun ; 11(1): 3727, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694502

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Commun ; 11(1): 1410, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179743

RESUMEN

The heat shock protein 90 (Hsp90) is a molecular chaperone that employs the free energy of ATP hydrolysis to control the folding and activation of several client proteins in the eukaryotic cell. To elucidate how the local ATPase reaction in the active site couples to the global conformational dynamics of Hsp90, we integrate here large-scale molecular simulations with biophysical experiments. We show that the conformational switching of conserved ion pairs between the N-terminal domain, harbouring the active site, and the middle domain strongly modulates the catalytic barrier of the ATP-hydrolysis reaction by electrostatic forces. Our combined findings provide a mechanistic model for the coupling between catalysis and protein dynamics in Hsp90, and show how long-range coupling effects can modulate enzymatic activity.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Pez Cebra/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Biocatálisis , Proteínas HSP90 de Choque Térmico/genética , Hidrólisis , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pez Cebra/genética
7.
Nat Commun ; 11(1): 1219, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139682

RESUMEN

Methylation of a conserved lysine in C-terminal domain of the molecular chaperone Hsp90 was shown previously to affect its in vivo function. However, the underlying mechanism remained elusive. Through a combined experimental and computational approach, this study shows that this site is very sensitive to sidechain modifications and crucial for Hsp90 activity in vitro and in vivo. Our results demonstrate that this particular lysine serves as a switch point for the regulation of Hsp90 functions by influencing its conformational cycle, ATPase activity, co-chaperone regulation, and client activation of yeast and human Hsp90. Incorporation of the methylated lysine via genetic code expansion specifically shows that upon modification, the conformational cycle of Hsp90 is altered. Molecular dynamics simulations including the methylated lysine suggest specific conformational changes that are propagated through Hsp90. Thus, methylation of the C-terminal lysine allows a precise allosteric tuning of Hsp90 activity via long distances.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Lisina/genética , Metilación , Simulación de Dinámica Molecular , Mutación/genética , Nucleótidos/metabolismo , Relación Estructura-Actividad
8.
J Cell Biol ; 217(9): 3091-3108, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29930205

RESUMEN

Mitochondrial ß-barrel proteins are encoded in the nucleus, translated by cytosolic ribosomes, and then imported into the organelle. Recently, a detailed understanding of the intramitochondrial import pathway of ß-barrel proteins was obtained. In contrast, it is still completely unclear how newly synthesized ß-barrel proteins reach the mitochondrial surface in an import-competent conformation. In this study, we show that cytosolic Hsp70 chaperones and their Hsp40 cochaperones Ydj1 and Sis1 interact with newly synthesized ß-barrel proteins. These interactions are highly relevant for proper biogenesis, as inhibiting the activity of the cytosolic Hsp70, preventing its docking to the mitochondrial receptor Tom70, or depleting both Ydj1 and Sis1 resulted in a significant reduction in the import of such substrates into mitochondria. Further experiments demonstrate that the interactions between ß-barrel proteins and Hsp70 chaperones and their importance are conserved also in mammalian cells. Collectively, this study outlines a novel mechanism in the early events of the biogenesis of mitochondrial outer membrane ß-barrel proteins.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Cultivadas , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Unión Proteica/fisiología , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA