RESUMEN
More and more studies are reporting on the natural transmission of SARS-CoV-2 between humans with COVID-19 and their companion animals (dogs and cats). While horses are apparently susceptible to SARS-CoV-2 infection based on the homology between the human and the equine ACE-2 receptor, no clinical or subclinical infection has yet been reported in the equine species. To investigate the possible clinical role of SARS-CoV-2 in equids, nasal secretions from 667 horses with acute onset of fever and respiratory signs were tested for the presence of SARS-CoV-2 by qPCR. The samples were collected from January to December of 2020 and submitted to a commercial molecular diagnostic laboratory for the detection of common respiratory pathogens (equine influenza virus, equine herpesvirus-1/-4, equine rhinitis A and B virus, Streptococcus equi subspecies equi). An additional 633 serum samples were tested for antibodies to SARS-CoV-2 using an ELISA targeting the receptor-binding domain of the spike protein. The serum samples were collected from a cohort of 587 healthy racing Thoroughbreds in California after track personnel tested qPCR-positive for SARS-CoV-2. While 241/667 (36%) equids with fever and respiratory signs tested qPCR-positive for at least one of the common respiratory pathogens, not a single horse tested qPCR-positive for SARS-CoV-2. Amongst the racing Thoroughbreds, 35/587 (5.9%) horses had detectable antibodies to SARS-CoV-2. Similar to dogs and cats, horses do not seem to develop clinical SARS-CoV-2 infection. However, horses can act as incidental hosts and experience silent infection following spillover from humans with COVID-19. SARS-CoV-2-infected humans should avoid close contact with equids during the time of their illness.
RESUMEN
The authors report on a possible direct exposure to SARS-CoV-2 from a COVID-19-positive individual to an adult horse. The individual, diagnosed with COVID-19 (Delta B.1.617.2), had daily contact to her two horses prior to and during the development of clinical disease. None of the two horses developed abnormal clinical signs or had detectable SARS-CoV-2 in blood, nasal secretion, or feces via RT-qPCR. However, one of the two horses showed close temporal seroconversion to SARS-CoV-2 using a protein-based ELISA and the plaque reduction neutralization test. The results suggest that horses can become silently infected with SARS-CoV-2 following close contact with humans infected with SARS-CoV-2. As a precautionary measure, humans infected with SARS-CoV-2 should avoid close contact with equids and other companion animals during the time of their illness to prevent viral transmission.