Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Rev Mol Cell Biol ; 22(7): 443, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33833433
2.
Cell ; 154(2): 403-15, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870128

RESUMEN

Autophagy is a process of cellular self-digestion induced by various forms of starvation. Although nitrogen deficit is a common trigger, some yeast cells induce autophagy upon switch from a rich to minimal media without nitrogen starvation. We show that the amino acid methionine is sufficient to inhibit such non-nitrogen-starvation (NNS)-induced autophagy. Methionine boosts synthesis of the methyl donor, S-adenosylmethionine (SAM). SAM inhibits autophagy and promotes growth through the action of the methyltransferase Ppm1p, which modifies the catalytic subunit of PP2A in tune with SAM levels. Methylated PP2A promotes dephosphorylation of Npr2p, a component of a conserved complex that regulates NNS autophagy and other growth-related processes. Thus, methionine and SAM levels represent a critical gauge of amino acid availability that is sensed via the methylation of PP2A to reciprocally regulate cell growth and autophagy.


Asunto(s)
Autofagia , Metionina/metabolismo , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Proteína Metiltransferasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell ; 154(2): 416-29, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870129

RESUMEN

Protein translation is an energetically demanding process that must be regulated in response to changes in nutrient availability. Herein, we report that intracellular methionine and cysteine availability directly controls the thiolation status of wobble-uridine (U34) nucleotides present on lysine, glutamine, or glutamate tRNAs to regulate cellular translational capacity and metabolic homeostasis. tRNA thiolation is important for growth under nutritionally challenging environments and required for efficient translation of genes enriched in lysine, glutamine, and glutamate codons, which are enriched in proteins important for translation and growth-specific processes. tRNA thiolation is downregulated during sulfur starvation in order to decrease sulfur consumption and growth, and its absence leads to a compensatory increase in enzymes involved in methionine, cysteine, and lysine biosynthesis. Thus, tRNA thiolation enables cells to modulate translational capacity according to the availability of sulfur amino acids, establishing a functional significance for this conserved tRNA nucleotide modification in cell growth control.


Asunto(s)
Aminoácidos Sulfúricos/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , Regulación hacia Abajo , ARN de Transferencia/química , Saccharomyces cerevisiae/crecimiento & desarrollo
4.
PLoS Genet ; 20(3): e1011202, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38452140

RESUMEN

To sustain growth in changing nutrient conditions, cells reorganize outputs of metabolic networks and appropriately reallocate resources. Signaling by reversible protein phosphorylation can control such metabolic adaptations. In contrast to kinases, the functions of phosphatases that enable metabolic adaptation as glucose depletes are poorly studied. Using a Saccharomyces cerevisiae deletion screen, we identified the PP2A-like phosphatase Ppg1 as required for appropriate carbon allocations towards gluconeogenic outputs-trehalose, glycogen, UDP-glucose, UDP-GlcNAc-after glucose depletion. This Ppg1 function is mediated via regulation of the assembly of the Far complex-a multi-subunit complex that tethers to the ER and mitochondrial outer membranes forming localized signaling hubs. The Far complex assembly is Ppg1 catalytic activity-dependent. Ppg1 regulates the phosphorylation status of multiple ser/thr residues on Far11 to enable the proper assembly of the Far complex. The assembled Far complex is required to maintain gluconeogenic outputs after glucose depletion. Glucose in turn regulates Far complex amounts. This Ppg1-mediated Far complex assembly, and Ppg1-Far complex dependent control of gluconeogenic outputs enables adaptive growth under glucose depletion. Our study illustrates how protein dephosphorylation is required for the assembly of a multi-protein scaffold present in localized cytosolic pools, to thereby alter gluconeogenic flux and enable cells to metabolically adapt to nutrient fluctuations.


Asunto(s)
Glucosa , Proteínas de Saccharomyces cerevisiae , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Fosfatasa 2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Fosforilación
5.
PLoS Biol ; 21(10): e3002342, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37874799

RESUMEN

Upon water loss, some organisms pause their life cycles and escape death. While widespread in microbes, this is less common in animals. Aedes mosquitoes are vectors for viral diseases. Aedes eggs can survive dry environments, but molecular and cellular principles enabling egg survival through desiccation remain unknown. In this report, we find that Aedes aegypti eggs, in contrast to Anopheles stephensi, survive desiccation by acquiring desiccation tolerance at a late developmental stage. We uncover unique proteome and metabolic state changes in Aedes embryos during desiccation that reflect reduced central carbon metabolism, rewiring towards polyamine production, and enhanced lipid utilisation for energy and polyamine synthesis. Using inhibitors targeting these processes in blood-fed mosquitoes that lay eggs, we infer a two-step process of desiccation tolerance in Aedes eggs. The metabolic rewiring towards lipid breakdown and dependent polyamine accumulation confers resistance to desiccation. Furthermore, rapid lipid breakdown is required to fuel energetic requirements upon water reentry to enable larval hatching and survival upon rehydration. This study is fundamental to understanding Aedes embryo survival and in controlling the spread of these mosquitoes.


Asunto(s)
Aedes , Animales , Aedes/metabolismo , Desecación , Metabolismo de los Lípidos , Mosquitos Vectores , Agua/metabolismo , Lípidos
6.
Proc Natl Acad Sci U S A ; 120(24): e2213241120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276406

RESUMEN

The inner mitochondrial membrane (IMM), housing components of the electron transport chain (ETC), is the site for respiration. The ETC relies on mobile carriers; therefore, it has long been argued that the fluidity of the densely packed IMM can potentially influence ETC flux and cell physiology. However, it is unclear if cells temporally modulate IMM fluidity upon metabolic or other stimulation. Using a photostable, red-shifted, cell-permeable molecular-rotor, Mitorotor-1, we present a multiplexed approach for quantitatively mapping IMM fluidity in living cells. This reveals IMM fluidity to be linked to cellular-respiration and responsive to stimuli. Multiple approaches combining in vitro experiments and live-cell fluorescence (FLIM) lifetime imaging microscopy (FLIM) show Mitorotor-1 to robustly report IMM 'microviscosity'/fluidity through changes in molecular free volume. Interestingly, external osmotic stimuli cause controlled swelling/compaction of mitochondria, thereby revealing a graded Mitorotor-1 response to IMM microviscosity. Lateral diffusion measurements of IMM correlate with microviscosity reported via Mitorotor-1 FLIM-lifetime, showing convergence of independent approaches for measuring IMM local-order. Mitorotor-1 FLIM reveals mitochondrial heterogeneity in IMM fluidity; between-and-within cells and across single mitochondrion. Multiplexed FLIM lifetime imaging of Mitorotor-1 and NADH autofluorescence reveals that IMM fluidity positively correlates with respiration, across individual cells. Remarkably, we find that stimulating respiration, through nutrient deprivation or chemically, also leads to increase in IMM fluidity. These data suggest that modulating IMM fluidity supports enhanced respiratory flux. Our study presents a robust method for measuring IMM fluidity and suggests a dynamic regulatory paradigm of modulating IMM local order on changing metabolic demand.


Asunto(s)
Membranas Mitocondriales , Sondas Moleculares/química , Membranas Mitocondriales/química , Respiración de la Célula , Fluidez de la Membrana , Presión Osmótica , Difusión
7.
PLoS Pathog ; 18(4): e1010475, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35427399

RESUMEN

Iron-sulfur (Fe-S) cluster proteins carry out essential cellular functions in diverse organisms, including the human pathogen Mycobacterium tuberculosis (Mtb). The mechanisms underlying Fe-S cluster biogenesis are poorly defined in Mtb. Here, we show that Mtb SufT (Rv1466), a DUF59 domain-containing essential protein, is required for the Fe-S cluster maturation. Mtb SufT homodimerizes and interacts with Fe-S cluster biogenesis proteins; SufS and SufU. SufT also interacts with the 4Fe-4S cluster containing proteins; aconitase and SufR. Importantly, a hyperactive cysteine in the DUF59 domain mediates interaction of SufT with SufS, SufU, aconitase, and SufR. We efficiently repressed the expression of SufT to generate a SufT knock-down strain in Mtb (SufT-KD) using CRISPR interference. Depleting SufT reduces aconitase's enzymatic activity under standard growth conditions and in response to oxidative stress and iron limitation. The SufT-KD strain exhibited defective growth and an altered pool of tricarboxylic acid cycle intermediates, amino acids, and sulfur metabolites. Using Seahorse Extracellular Flux analyzer, we demonstrated that SufT depletion diminishes glycolytic rate and oxidative phosphorylation in Mtb. The SufT-KD strain showed defective survival upon exposure to oxidative stress and nitric oxide. Lastly, SufT depletion reduced the survival of Mtb in macrophages and attenuated the ability of Mtb to persist in mice. Altogether, SufT assists in Fe-S cluster maturation and couples this process to bioenergetics of Mtb for survival under low and high demand for Fe-S clusters.


Asunto(s)
Proteínas Hierro-Azufre , Mycobacterium tuberculosis , Aconitato Hidratasa/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Ratones , Mycobacterium tuberculosis/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo
8.
PLoS Genet ; 16(12): e1009252, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33378328

RESUMEN

Growth and starvation are considered opposite ends of a spectrum. To sustain growth, cells use coordinated gene expression programs and manage biomolecule supply in order to match the demands of metabolism and translation. Global growth programs complement increased ribosomal biogenesis with sufficient carbon metabolism, amino acid and nucleotide biosynthesis. How these resources are collectively managed is a fundamental question. The role of the Gcn4/ATF4 transcription factor has been best studied in contexts where cells encounter amino acid starvation. However, high Gcn4 activity has been observed in contexts of rapid cell proliferation, and the roles of Gcn4 in such growth contexts are unclear. Here, using a methionine-induced growth program in yeast, we show that Gcn4/ATF4 is the fulcrum that maintains metabolic supply in order to sustain translation outputs. By integrating matched transcriptome and ChIP-Seq analysis, we decipher genome-wide direct and indirect roles for Gcn4 in this growth program. Genes that enable metabolic precursor biosynthesis indispensably require Gcn4; contrastingly ribosomal genes are partly repressed by Gcn4. Gcn4 directly binds promoter-regions and transcribes a subset of metabolic genes, particularly driving lysine and arginine biosynthesis. Gcn4 also globally represses lysine and arginine enriched transcripts, which include genes encoding the translation machinery. The Gcn4 dependent lysine and arginine supply thereby maintains the synthesis of the translation machinery. This is required to maintain translation capacity. Gcn4 consequently enables metabolic-precursor supply to bolster protein synthesis, and drive a growth program. Thus, we illustrate how growth and starvation outcomes are both controlled using the same Gcn4 transcriptional outputs that function in distinct contexts.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proliferación Celular , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Activación Transcripcional
9.
Mol Cell ; 53(3): 363-4, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24507713

RESUMEN

In this issue of Molecular Cell, Hendriks et al. (2014) uncover extensive oscillations in global gene expression during C. elegans development, in synchrony with the molting cycle.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Modelos Genéticos , Animales
10.
J Biol Chem ; 295(52): 18390-18405, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33122193

RESUMEN

Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.


Asunto(s)
Anabolizantes/aislamiento & purificación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Metilación , Fosforilación , Biosíntesis de Proteínas , Proteína Fosfatasa 2/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
11.
J Biol Chem ; 295(47): 16037-16057, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32934008

RESUMEN

Methylenetetrahydrofolate reductase (MTHFR) links the folate cycle to the methionine cycle in one-carbon metabolism. The enzyme is known to be allosterically inhibited by SAM for decades, but the importance of this regulatory control to one-carbon metabolism has never been adequately understood. To shed light on this issue, we exchanged selected amino acid residues in a highly conserved stretch within the regulatory region of yeast MTHFR to create a series of feedback-insensitive, deregulated mutants. These were exploited to investigate the impact of defective allosteric regulation on one-carbon metabolism. We observed a strong growth defect in the presence of methionine. Biochemical and metabolite analysis revealed that both the folate and methionine cycles were affected in these mutants, as was the transsulfuration pathway, leading also to a disruption in redox homeostasis. The major consequences, however, appeared to be in the depletion of nucleotides. 13C isotope labeling and metabolic studies revealed that the deregulated MTHFR cells undergo continuous transmethylation of homocysteine by methyltetrahydrofolate (CH3THF) to form methionine. This reaction also drives SAM formation and further depletes ATP reserves. SAM was then cycled back to methionine, leading to futile cycles of SAM synthesis and recycling and explaining the necessity for MTHFR to be regulated by SAM. The study has yielded valuable new insights into the regulation of one-carbon metabolism, and the mutants appear as powerful new tools to further dissect out the intersection of one-carbon metabolism with various pathways both in yeasts and in humans.


Asunto(s)
Adenosina Trifosfato/química , Metilenotetrahidrofolato Reductasa (NADPH2)/química , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Humanos , Metilación , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Biochem J ; 477(12): 2193-2219, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32478812

RESUMEN

The Baculoviridae family of viruses encode a viral Ubiquitin (vUb) gene. Though the vUb is homologous to the host eukaryotic Ubiquitin (Ub), its preservation in the viral genome indicates unique functions that are not compensated by the host Ub. We report the structural, biophysical, and biochemical properties of the vUb from Autographa californica multiple nucleo-polyhedrosis virus (AcMNPV). The packing of central helix α1 to the beta-sheet ß1-ß5 is different between vUb and Ub. Consequently, its stability is lower compared with Ub. However, the surface properties, ubiquitination activity, and the interaction with Ubiquitin-binding domains are similar between vUb and Ub. Interestingly, vUb forms atypical polyubiquitin chain linked by lysine at the 54th position (K54), and the deubiquitinating enzymes are ineffective against the K54-linked polyubiquitin chains. We propose that the modification of host/viral proteins with the K54-linked chains is an effective way selected by the virus to protect the vUb signal from host DeUbiquitinases.


Asunto(s)
Closterovirus/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Poliubiquitina/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Ubiquitinación , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Células HEK293 , Humanos , Lisina/química , Lisina/genética , Lisina/metabolismo , Poliubiquitina/química , Conformación Proteica , Homología de Secuencia , Proteínas Virales/química
14.
J Biol Chem ; 294(46): 17209-17223, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604822

RESUMEN

Cells use multiple mechanisms to regulate their metabolic states in response to changes in their nutrient environment. One example is the response of cells to glucose. In Saccharomyces cerevisiae growing in glucose-depleted medium, the re-availability of glucose leads to the down-regulation of gluconeogenesis and the activation of glycolysis, leading to "glucose repression." However, our knowledge of the mechanisms mediating the glucose-dependent down-regulation of the gluconeogenic transcription factors is limited. Using the major gluconeogenic transcription factor Rds2 as a candidate, we identify here a novel role for the E3 ubiquitin ligase Pib1 in regulating the stability and degradation of Rds2. Glucose addition to cells growing under glucose limitation results in a rapid ubiquitination of Rds2, followed by its proteasomal degradation. Through in vivo and in vitro experiments, we establish Pib1 as the ubiquitin E3 ligase that regulates Rds2 ubiquitination and stability. Notably, this Pib1-mediated Rds2 ubiquitination, followed by proteasomal degradation, is specific to the presence of glucose. This Pib1-mediated ubiquitination of Rds2 depends on the phosphorylation state of Rds2, suggesting a cross-talk between ubiquitination and phosphorylation to achieve a metabolic state change. Using stable isotope-based metabolic flux experiments, we find that the loss of Pib1 results in an imbalanced gluconeogenic state, regardless of glucose availability. Pib1 is required for complete glucose repression and enables cells to optimally grow in competitive environments when glucose again becomes available. Our results reveal the existence of a Pib1-mediated regulatory program that mediates glucose repression when glucose availability is restored.


Asunto(s)
Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/genética , Gluconeogénesis/genética , Glucosa/genética , Fosforilación/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética
15.
Curr Genet ; 66(3): 475-480, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31758251

RESUMEN

Cells must appropriately sense available nutrients and accordingly regulate their metabolic outputs, to survive. This mini-review considers the idea that conserved chemical modifications of wobble (U34) position tRNA uridines enable cells to sense nutrients and regulate their metabolic state. tRNA wobble uridines are chemically modified at the 2- and 5- positions, with a thiol (s2), and (commonly) a methoxycarbonylmethyl (mcm5) modification, respectively. These modifications reflect sulfur amino acid (methionine and cysteine) availability. The loss of these modifications has minor translation defects. However, they result in striking phenotypes consistent with an altered metabolic state. Using yeast, we recently discovered that the s2 modification regulates overall carbon and nitrogen metabolism, dependent on methionine availability. The loss of this modification results in rewired carbon (glucose) metabolism. Cells have reduced carbon flux towards the pentose phosphate pathway and instead increased flux towards storage carbohydrates-primarily trehalose, along with reduced nucleotide synthesis, and perceived amino acid starvation signatures. Remarkably, this metabolic rewiring in the s2U mutants is caused by mechanisms leading to intracellular phosphate limitation. Thus this U34 tRNA modification responds to methionine availability and integratively regulates carbon and nitrogen homeostasis, wiring cells to a 'growth' state. We interpret the importance of U34 modifications in the context of metabolic sensing and anabolism, emphasizing their intimate coupling to methionine metabolism.


Asunto(s)
Aminoácidos/metabolismo , Carbono/metabolismo , Homeostasis , Nitrógeno/metabolismo , ARN de Transferencia/química , Saccharomyces cerevisiae/genética , Uridina/química , Biosíntesis de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Biol Chem ; 291(20): 10515-27, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26984404

RESUMEN

The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis.


Asunto(s)
Adenosina Monofosfato/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Regulación Alostérica , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Núcleo Celular/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Dieta Alta en Grasa , Sacarosa en la Dieta/administración & dosificación , Hepatocitos/metabolismo , Carioferinas/metabolismo , Cuerpos Cetónicos/metabolismo , Masculino , Modelos Biológicos , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
17.
J Cell Sci ; 128(24): 4467-74, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26672015

RESUMEN

In the past decade, major advances have occurred in the understanding of mammalian stem cell biology, but roadblocks (including gaps in our fundamental understanding) remain in translating this knowledge to regenerative medicine. Interestingly, a close analysis of the Saccharomyces cerevisiae literature leads to an appreciation of how much yeast biology has contributed to the conceptual framework underpinning our understanding of stem cell behavior, to the point where such insights have been internalized into the realm of the known. This Opinion article focuses on one such example, the quiescent adult mammalian stem cell, and examines concepts underlying our understanding of quiescence that can be attributed to studies in yeast. We discuss the metabolic, signaling and gene regulatory events that control entry and exit into quiescence in yeast. These processes and events retain remarkable conservation and conceptual parallels in mammalian systems, and collectively suggest a regulated program beyond the cessation of cell division. We argue that studies in yeast will continue to not only reveal fundamental concepts in quiescence, but also leaven progress in regenerative medicine.


Asunto(s)
Células Madre Adultas/metabolismo , Ciclo Celular/fisiología , Regeneración/fisiología , Saccharomyces cerevisiae/fisiología , Células Madre Adultas/citología , Animales , Humanos
18.
Proc Natl Acad Sci U S A ; 110(24): 9728-33, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716694

RESUMEN

The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure.


Asunto(s)
Proteínas Mitocondriales/química , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Estructura Terciaria de Proteína , Regulación Alostérica , Animales , Sitios de Unión/genética , Cromatografía Liquida , Cristalografía por Rayos X , Isoleucina/sangre , Isoleucina/metabolismo , Cinética , Leucina/sangre , Leucina/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Estructura Molecular , Mutación , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Fenilpropionatos/farmacología , Fosforilación , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Espectrometría de Masas en Tándem , Valina/sangre , Valina/metabolismo
19.
Nat Commun ; 15(1): 7254, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179593

RESUMEN

Cells contain disparate amounts of distinct amino acids, each of which has different metabolic and chemical origins, but the supply cost vs demand requirements of each is unclear. Here, using yeast we quantify the restoration-responses after disrupting amino acid supply, and uncover a hierarchically prioritized restoration strategy for distinct amino acids. We comprehensively calculate individual amino acid biosynthetic supply costs, quantify total demand for an amino acid, and estimate cumulative supply/demand requirements for each amino acid. Through this, we discover that the restoration priority is driven by the gross demand for an amino acid, which is itself coupled to low supply costs for that amino acid. Demand from metabolic requirements dominate the demand-pulls for an amino acid, as exemplified by the largest restoration response upon disrupting arginine supply. Collectively, this demand-driven framework that drives the amino acid economy can identify novel amino acid responses, and help design metabolic engineering applications.


Asunto(s)
Aminoácidos , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica/métodos , Arginina/metabolismo
20.
Elife ; 122024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324403

RESUMEN

Many cells in high glucose repress mitochondrial respiration, as observed in the Crabtree and Warburg effects. Our understanding of biochemical constraints for mitochondrial activation is limited. Using a Saccharomyces cerevisiae screen, we identified the conserved deubiquitinase Ubp3 (Usp10), as necessary for mitochondrial repression. Ubp3 mutants have increased mitochondrial activity despite abundant glucose, along with decreased glycolytic enzymes, and a rewired glucose metabolic network with increased trehalose production. Utilizing ∆ubp3 cells, along with orthogonal approaches, we establish that the high glycolytic flux in glucose continuously consumes free Pi. This restricts mitochondrial access to inorganic phosphate (Pi), and prevents mitochondrial activation. Contrastingly, rewired glucose metabolism with enhanced trehalose production and reduced GAPDH (as in ∆ubp3 cells) restores Pi. This collectively results in increased mitochondrial Pi and derepression, while restricting mitochondrial Pi transport prevents activation. We therefore suggest that glycolytic flux-dependent intracellular Pi budgeting is a key constraint for mitochondrial repression.


Asunto(s)
Glucosa , Mitocondrias , Fosfatos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Glucosa/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosfatos/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Glucólisis , Trehalosa/metabolismo , Endopeptidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA