Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(33): 22117-22123, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37560975

RESUMEN

Molecules of fluorescent proteins (FPs) exhibit distinct optical directionality. This optical directionality is characterized by transition dipole moments (TDMs), and their orientation with respect to the molecular structures. Although our recent observations of FP crystals allowed us to determine the mean TDM directions with respect to the framework of representative FP molecules, the dynamics of TDM orientations within FP molecules remain to be ascertained. Here we describe the results of our investigations of the dynamics of TDM directions in the fluorescent proteins eGFP, mTurquoise2 and mCherry, through time-resolved fluorescence polarization measurements and microsecond time scale all-atom molecular dynamics (MD) simulations. The investigated FPs exhibit initial fluorescence anisotropies (r0) consistent with significant differences in the orientation of the excitation and emission TDMs. However, based on MD data, we largely attribute this observation to rapid (sub-nanosecond) fluorophore motions within the FP molecular framework. Our results allow improved determinations of orientational distributions of FP molecules by polarization microscopy, as well as more accurate interpretations of fluorescence resonance energy transfer (FRET) observations.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Estructura Molecular , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/química , Colorantes Fluorescentes/química
2.
Proc Natl Acad Sci U S A ; 117(51): 32395-32401, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33273123

RESUMEN

Fluorescent molecules are like antennas: The rate at which they absorb light depends on their orientation with respect to the incoming light wave, and the apparent intensity of their emission depends on their orientation with respect to the observer. However, the directions along which the most important fluorescent molecules in biology, fluorescent proteins (FPs), absorb and emit light are generally not known. Our optical and X-ray investigations of FP crystals have now allowed us to determine the molecular orientations of the excitation and emission transition dipole moments in the FPs mTurquoise2, eGFP, and mCherry, and the photoconvertible FP mEos4b. Our results will allow using FP directionality in studies of molecular and biological processes, but also in development of novel bioengineering and bioelectronics applications.


Asunto(s)
Proteínas Luminiscentes/química , Anisotropía , Cristalografía por Rayos X , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Luz , Proteínas Luminiscentes/genética , Microscopía de Polarización , Proteína Fluorescente Roja
3.
Opt Express ; 30(4): 5450-5464, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209507

RESUMEN

Challenging experiments for tests in fundamental physics require highly coherent optical frequency references with suppressed phase noise from hundreds of kHz down to µHz of Fourier frequencies. It can be achieved by remote synchronization of many frequency references interconnected by stabilized optical fibre links. Here we describe the path to realize a delocalized optical frequency reference for spectroscopy of the isomeric state of the nucleus of Thorium-229 atom. This is a prerequisite for the realization of the next generation of an optical clock - the nuclear clock. We present the established 235 km long phase-coherent stabilized cross-border fibre link connecting two delocalized metrology laboratories in Brno and Vienna operating highly-coherent lasers disciplined by active Hydrogen masers through optical frequency combs. A significant part (up to tens of km) of the optical fibre is passing urban combined collectors with a non-negligible level of acoustic interference and temperature changes, which results in a power spectral density of phase noise over 105 rad2· Hz-1. Therefore, we deploy a digital signal processing technique to suppress the fibre phase noise over a wide dynamic range of phase fluctuations. To demonstrate the functionality of the link, we measured the phase noise power spectral density of a remote beat note between two independent lasers, locked to high-finesse stable resonators. Using optical frequency combs at both ends of the link, a long-term fractional frequency stability in the order of 10-15 between local active Hydrogen masers was measured as well. Thanks to this technique, we have achieved reliable operation of the phase-coherent fibre link with fractional stability of 7 × 10-18 in 103 s.

4.
Opt Lett ; 47(21): 5704-5707, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219308

RESUMEN

The wide span and high density of lines in its rovibrational spectrum render hydrogen cyanide a useful spectroscopic media for referencing absolute frequencies of lasers in optical communication and dimensional metrology. We determined, for the first time to the best of our knowledge, the molecular transitions' center frequencies of the H13C14N isotope in the range from 1526 nm to 1566 nm with 1.3 × 10-10 fractional uncertainty. We investigated the molecular transitions with a highly coherent and widely tunable scanning laser that was precisely referenced to a hydrogen maser through an optical frequency comb. We demonstrated an approach to stabilize the operational conditions needed to maintain the constantly low pressure of the hydrogen cyanide to carry out the saturated spectroscopy with the third-harmonic synchronous demodulation. We demonstrated approximately a forty-fold improvement in the line centers' resolution compared to the previous result.

5.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36236411

RESUMEN

In nuclear power plants, particle accelerators, and other nuclear facilities, measuring the level of ionising gamma radiation is critical for the safety and management of the operation and the environment's protection. However, in many cases, it is impossible to monitor ionising radiation directly at the required location continuously. This is typically either due to the lack of space to accommodate the entire dosimeter or in environments with high ionising radiation activity, electromagnetic radiation, and temperature, which significantly shorten electronics' lifetime. To allow for radiation measurement in such scenarios, we designed a fibre optic dosimeter that introduces an optical fibre link to deliver the scintillation radiation between the ionising radiation sensor and the detectors. The sensors can thus be placed in space-constrained and electronically hostile locations. We used silica optical fibres that withstand high radiation doses, high temperatures, and electromagnetic interference. We use a single photon counter and a photomultiplier to detect the transmitted scintillation radiation. We have shown that selected optical fibres, combined with different scintillation materials, are suitable for measuring gamma radiation levels in hundreds of kBq. We present the architecture of the dosimeter and its experimental characterisation with several combinations of optical fibres, detectors, and scintillation crystals.


Asunto(s)
Fibras Ópticas , Dosímetros de Radiación , Fenómenos Físicos , Radiometría , Conteo por Cintilación , Dióxido de Silicio
6.
Opt Express ; 27(7): 9361-9371, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045088

RESUMEN

In this contribution, we investigate the properties of antireflective coatings on iodine-filled absorption cell windows. These coatings are subject to high temperatures during the cell production process and are in direct contact with the absorption medium, which influences their optical performance. We tested the thermal resistance of TiO2- and Ta2O5- based coatings produced using conventional electron beam evaporation (e-beam) and ion-assisted deposition (PIAD). We prepared a set of iodine-filled absorption cells that were used to test the coatings' resistance to iodine vapors. We show that the choice of coating materials, coating methods, and a well-chosen bakeout procedure can mitigate any unwanted effects, such as temperature-induced spectral shifts and optical losses inhomogeneities or settling of the absorption medium in the coating.

7.
Opt Express ; 27(23): 33459-33473, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878415

RESUMEN

The study compares three variants of focus sensors designed for the optical topography measurement of rough surface specimens with submicron accuracy. We present a theoretical analysis of the focus sensor principles and the experimental measurements with a single point laser probe. A low coherent illumination beam was provided by a monochromatic laser source and a rotating diffuser, which reduced the speckles generated by the rough surface. The reflected beam was modulated by three specific optical elements (axicon, double wedge prism, four spherical lenses) realized by a spatial light modulator. A digital camera detected the output intensity patterns that were evaluated by the intensity centroid method. The results showed a good coincidence of the surface profiles obtained by the three sensor variants with the root-mean-square deviations below one micron. We discuss the results obtained for several specimens with various surface roughness and compare the differences between the three focus sensor variants.

8.
J Biol Chem ; 292(23): 9690-9698, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28438833

RESUMEN

The Gi/o protein family transduces signals from a diverse group of G protein-coupled receptors (GPCRs). The observed specificity of Gi/o-GPCR coupling and the high rate of Gi/o signal transduction have been hypothesized to be enabled by the existence of stable associates between Gi/o proteins and their cognate GPCRs in the inactive state (Gi/o-GPCR preassembly). To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gαi1 subunits labeled with fluorescent proteins and four GPCRs: the α2A-adrenergic receptor, GABAB, cannabinoid receptor type 1 (CB1R), and dopamine receptor type 2. Our experiments with non-dissociating mutants of fluorescently labeled Gαi1 subunits (exhibiting impaired dissociation from activated GPCRs) showed that 2PPM is capable of detecting GPCR-G protein interactions. 2PPM experiments with non-mutated fluorescently labeled Gαi1 subunits and α2A-adrenergic receptor, GABAB, or dopamine receptor type 2 receptors did not reveal any interaction between the Gi1 protein and the non-stimulated GPCRs. In contrast, non-stimulated CB1R exhibited an interaction with the Gi1 protein. Further experiments revealed that this interaction is caused solely by CB1R basal activity; no preassembly between CB1R and the Gi1 protein could be observed. Our results demonstrate that four diverse GPCRs do not preassemble with non-active Gi1 However, we also show that basal GPCR activity allows interactions between non-stimulated GPCRs and Gi1 (basal coupling). These findings suggest that Gi1 interacts only with active GPCRs and that the well known high speed of GPCR signal transduction does not require preassembly between G proteins and GPCRs.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Células HEK293 , Humanos , Mutación , Receptores Acoplados a Proteínas G/genética
9.
Sensors (Basel) ; 17(1)2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28067834

RESUMEN

This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

10.
Sensors (Basel) ; 16(9)2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27608024

RESUMEN

The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30-300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10 - 9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm.

11.
J Biol Chem ; 289(3): 1271-81, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24307173

RESUMEN

Although most heterotrimeric G proteins are thought to dissociate into Gα and Gßγ subunits upon activation, the evidence in the Gi/o family has long been inconsistent and contradictory. The Gi/o protein family mediates inhibition of cAMP production and regulates the activity of ion channels. On the basis of experimental evidence, both heterotrimer dissociation and rearrangement have been postulated as crucial steps of Gi/o protein activation and signal transduction. We have now investigated the process of Gi/o activation in living cells directly by two-photon polarization microscopy and indirectly by observations of G protein-coupled receptor kinase-derived polypeptides. Our observations of existing fluorescently labeled and non-modified Gαi/o constructs indicate that the molecular mechanism of Gαi/o activation is affected by the presence and localization of the fluorescent label. All investigated non-labeled, non-modified Gi/o complexes dissociate extensively upon activation. The dissociated subunits can activate downstream effectors and are thus likely to be the major activated Gi/o form. Constructs of Gαi/o subunits fluorescently labeled at the N terminus (GAP43-CFP-Gαi/o) seem to faithfully reproduce the behavior of the non-modified Gαi/o subunits. Gαi constructs labeled within the helical domain (Gαi-L91-YFP) largely do not dissociate upon activation, yet still activate downstream effectors, suggesting that the dissociation seen in non-modified Gαi/o proteins is not required for downstream signaling. Our results appear to reconcile disparate published data and settle a long running dispute.


Asunto(s)
Proteína GAP-43/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Activación Enzimática/fisiología , Proteína GAP-43/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Células HEK293 , Humanos
12.
Appl Opt ; 54(33): 9930-8, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26836560

RESUMEN

We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.

13.
Nat Methods ; 8(8): 684-90, 2011 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-21725301

RESUMEN

Membrane proteins are a large, diverse group of proteins, serving a multitude of cellular functions. They are difficult to study because of their requirement of a lipid membrane for function. Here we show that two-photon polarization microscopy can take advantage of the cell membrane requirement to yield insights into membrane protein structure and function, in living cells and organisms. The technique allows sensitive imaging of G-protein activation, changes in intracellular calcium concentration and other processes, and is not limited to membrane proteins. Conveniently, many suitable probes for two-photon polarization microscopy already exist.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Microscopía de Polarización/métodos , Conformación Proteica , Relación Estructura-Actividad
14.
Appl Opt ; 53(31): 7435-41, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25402909

RESUMEN

We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

15.
Sensors (Basel) ; 14(1): 1757-70, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24448169

RESUMEN

A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10(-11).

16.
Sensors (Basel) ; 14(1): 877-86, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24451463

RESUMEN

We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) µm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment.

17.
Sensors (Basel) ; 13(2): 2206-19, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23435049

RESUMEN

In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

18.
Sensors (Basel) ; 13(10): 13090-8, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24084107

RESUMEN

This paper presents a method implemented in a system for automatic contactless calibration of gauge blocks designed at ISI ASCR. The system combines low-coherence interferometry and laser interferometry, where the first identifies the gauge block sides position and the second one measures the gauge block length itself. A crucial part of the system is the algorithm for gauge block alignment to the measuring beam which is able to compensate the gauge block lateral and longitudinal tilt up to 0.141 mrad. The algorithm is also important for the gauge block position monitoring during its length measurement.


Asunto(s)
Algoritmos , Interferometría/instrumentación , Interferometría/métodos , Rayos Láser , Calibración/normas , Precisión de la Medición Dimensional , Diseño de Equipo , Análisis de Falla de Equipo , Interferometría/normas , Internacionalidad , Pesos y Medidas
19.
Opt Express ; 20(25): 27830-7, 2012 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23262728

RESUMEN

We present a concept of suppression of the influence of variations of the refractive index of air in displacement measuring interferometry. The principle is based on referencing of wavelength of the coherent laser source in atmospheric conditions instead of traditional stabilization of the optical frequency and indirect evaluation of the refractive index of air. The key advantage is in identical beam paths of the position measuring interferometers and the interferometer used for the wavelength stabilization. Design of the optical arrangement presented here to verify the concept is suitable for real interferometric position sensing in technical practice especially where a high resolution measurement within some limited range in atmospheric conditions is needed, e.g. in nanometrology.


Asunto(s)
Aire , Interferometría/métodos , Modelos Teóricos , Nanotecnología/métodos , Refractometría/métodos , Atmósfera , Diseño de Equipo , Interferometría/instrumentación , Interferometría/normas , Rayos Láser , Nanotecnología/instrumentación , Nanotecnología/normas , Refractometría/instrumentación , Refractometría/normas
20.
Sensors (Basel) ; 12(10): 14095-112, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23202038

RESUMEN

We have proposed an approach to the interference phase extraction in the homodyne laser interferometry. The method employs a series of computational steps to reconstruct the signals for quadrature detection from an interference signal from a non-polarising interferometer sampled by a simple photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. It is analytically derived and its validity and performance is experimentally verified. The method has proven to be a feasible alternative for the traditional homodyne detection since it performs with comparable accuracy, especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden (e.g., in multi-axis sensor or laser diode based systems).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA