Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Biomed Eng ; 7(4): 559-575, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36266536

RESUMEN

Electrical neurostimulation is effective in the treatment of neurological disorders, but associated recording artefacts generally limit its applications to open-loop stimuli. Real-time and continuous closed-loop control of brain activity can, however, be achieved by pairing concurrent electrical recordings and optogenetics. Here we show that closed-loop optogenetic stimulation with excitatory opsins enables the precise manipulation of neural dynamics in brain slices from transgenic mice and in anaesthetized non-human primates. The approach generates oscillations in quiescent tissue, enhances or suppresses endogenous patterns in active tissue and modulates seizure-like bursts elicited by the convulsant 4-aminopyridine. A nonlinear model of the phase-dependent effects of optical stimulation reproduced the modulation of cycles of local-field potentials associated with seizure oscillations, as evidenced by the systematic changes in the variability and entropy of the phase-space trajectories of seizures, which correlated with changes in their duration and intensity. We also show that closed-loop optogenetic neurostimulation could be delivered using intracortical optrodes incorporating light-emitting diodes. Closed-loop optogenetic approaches may be translatable to therapeutic applications in humans.


Asunto(s)
Optogenética , Convulsiones , Ratones , Animales , Ratones Transgénicos , Primates , Encéfalo
2.
Neurosci Lett ; 711: 134437, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31422098

RESUMEN

Parkinson's disease (PD) is characterised pathologically by degeneration of the dopaminergic (DA) neurones of the substantia nigra pars compacta (SNpc) and the presence of α-synuclein containing Lewy body inclusions. Trichloroethylene (TCE) has been suggested as a potential environmental chemical that may contribute to the development of PD, via conversion to the neurotoxin, 1-Trichloromethyl-1,2,3,4-tetrahydro-ß-carboline (TaClo). We investigated the effect of an 8 week exposure to TCE or TaClo on wild type and, as an experimental model of PD, A30P mutant α-synuclein overexpressing mice using a combination of behaviour and pathology. TCE or TaClo exposure caused significant DA neuronal loss within the SNpc in both wild type and transgenic mice. Cell numbers were lower in A30P animals than wild type, however, no additive effect of TCE or TaClo exposure and A30P overexpression was found. TCE or TaClo did not appear to lead to acceleration of motor or cognitive deficits in either wild type or A30P mutant mice, potentially because of the modest reductions of DA neuronal number in the SNpc. Our results do however suggest that TCE exposure could be a possible factor in development of PD like changes following exposure.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Degeneración Nerviosa/patología , Neurotoxinas/toxicidad , Trastornos Parkinsonianos/patología , Tricloroetileno/toxicidad , Animales , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neurotoxinas/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Tricloroetileno/metabolismo , alfa-Sinucleína/genética
3.
Neuron ; 31(3): 487-95, 2001 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-11516404

RESUMEN

Neural processing occurs in parallel in distant cortical areas even for simple perceptual tasks. Associated cognitive binding is believed to occur through the interareal synchronization of rhythmic activity in the gamma (30-80 Hz) range. Such oscillations arise as an emergent property of the neuronal network and require conventional chemical neurotransmission. To test the potential role of gap junction-mediated electrical signaling in this network property, we generated mice lacking connexin 36, the major neuronal connexin. Here we show that the loss of this protein disrupts gamma frequency network oscillations in vitro but leaves high frequency (150 Hz) rhythms, which may involve gap junctions between principal cells (Schmitz et al., 2001), unaffected. Thus, specific connexins differentially deployed throughout cortical networks are likely to regulate different functional aspects of neuronal information processing in the mature brain.


Asunto(s)
Encéfalo/fisiología , Conexinas/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Envejecimiento , Animales , Encéfalo/crecimiento & desarrollo , Carbacol/farmacología , Corteza Cerebral/fisiología , Conexinas/deficiencia , Conexinas/genética , Electroencefalografía , Uniones Comunicantes/fisiología , Regulación del Desarrollo de la Expresión Génica , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Oscilometría , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transcripción Genética , Proteína delta-6 de Union Comunicante
4.
J Neurosci ; 21(18): 7303-12, 2001 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-11549740

RESUMEN

The processing of biologically important sounds depends on the analysis of their frequency content by the cochlea and the CNS. GABAergic inhibition in the inferior colliculus shapes frequency response areas in echolocating bats, but a similar role in nonspecialized mammals has been questioned. We used the powerful combination of iontophoresis with detailed analysis of frequency response areas to test the hypothesis that GABAergic and glycinergic inhibition operating in the inferior colliculus of a nonspecialized mammal (guinea pig) shape the frequency responses of neurons in this nucleus. Our analysis reveals two groups of response areas in the inferior colliculus: V-shaped and non-V-shaped. The response as a function of level in neurons with V-shaped response areas can be either monotonic or nonmonotonic. Application of bicuculline or strychnine in these neurons, to block inhibition mediated by GABA(A) or glycinergic receptors, respectively, increases firing rate primarily within the boundaries of the control response area. In contrast, neurons in the non-V-shaped group have response areas that include narrow, closed, tilted, and double-peaked types. In this group, blockade of GABA(A) and glycine receptors increases firing rate but also changes response area shape, with most becoming more V-shaped. We conclude that (1) non-V-shaped response areas can be generated by GABA and glycinergic synapses within the inferior colliculus and do not simply reflect inhibition acting more peripherally in the pathway and (2) frequency-dependent inhibition is an important general feature of the mammalian inferior colliculus and not a specialization unique to echolocating bats.


Asunto(s)
Colículos Inferiores/fisiología , Inhibición Neural/fisiología , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Estimulación Acústica , Animales , Bicuculina/farmacología , Electrodos Implantados , Femenino , Antagonistas del GABA/farmacología , Antagonistas de Receptores de GABA-A , Glicinérgicos/farmacología , Cobayas , Colículos Inferiores/citología , Colículos Inferiores/efectos de los fármacos , Iontoforesis , Masculino , Neuronas/clasificación , Neuronas/efectos de los fármacos , Neuronas/fisiología , Percepción de la Altura Tonal/fisiología , Receptores de Glicina/antagonistas & inhibidores , Estricnina/farmacología , Sinapsis/fisiología
5.
J Neurosci ; 21(5): 1727-38, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11222662

RESUMEN

Gamma frequency oscillations occur in hippocampus in vitro after brief tetani delivered to afferent pathways. Previous reports have characterized these oscillations as either (1) trains of GABA(A) inhibitory synaptic events mediated by depolarization of both pyramidal cells and interneurons at least in part mediated by metabotropic glutamate and acetylcholine receptors, or (2) field potential oscillations occurring in the near absence of an inhibitory synaptic oscillation when cells are driven by depolarizing GABA responses and local synchrony is produced by field effects. The aim of this study was to investigate factors involved in the differential expression of these synaptically and nonsynaptically gated oscillations. Field effects were undetectable in control recordings but manifested when slices were perfused with hypo-osmotic solutions or a reduced level of normal perfusate. These manipulations also reduced the amplitude of the train of inhibitory synaptic events associated with an oscillation and enhanced the depolarizing GABA component underlying the post-tetanic depolarization. The resulting field oscillation was still dependent, at least in part, on inhibitory synaptic transmission, but spatiotemporal aspects of the oscillation were severely disrupted. These changes were also accompanied by an increase in estimated [K(+)](o) compared with control. We suggest that nonsynaptic oscillations occur under conditions also associated with epileptiform activity and constitute a phenomenon that is distinct from synaptically gated oscillations. The latter remain a viable model for in vivo oscillations of cognitive relevance.


Asunto(s)
Relojes Biológicos/fisiología , Hipocampo/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Inhibición Neural/fisiología , Concentración Osmolar , Perfusión/métodos , Piperazinas/farmacología , Potasio/metabolismo , Potasio/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Agonistas de Receptores de Serotonina/farmacología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
6.
J Neurosci ; 21(23): 9478-86, 2001 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11717382

RESUMEN

Gamma-frequency (30-70 Hz) oscillations in populations of interneurons may be of functional relevance in the brain by virtue of their ability to induce synchronous firing in principal neurons. Such a role would require that neurons, 1 mm or more apart, be able to synchronize their activity, despite the presence of axonal conduction delays and of the limited axonal spread of many interneurons. We showed previously that interneuron doublet firing can help to synchronize gamma oscillations, provided that sufficiently many pyramidal neurons are active; we also suggested that gap junctions, between the axons of principal neurons, could contribute to the long-range synchrony of gamma oscillations induced in the hippocampus by carbachol in vitro. Here we consider interneuron network gamma: that is, gamma oscillations in pharmacologically isolated networks of tonically excited interneurons, with frequency gated by mutual GABA(A) receptor-mediated IPSPs. We provide simulation and electrophysiological evidence that interneuronal gap junctions (presumably dendritic) can enhance the synchrony of such gamma oscillations, in spatially extended interneuron networks. There appears to be a sharp threshold conductance, below which the interneuron dendritic gap junctions do not exert a synchronizing role.


Asunto(s)
Relojes Biológicos/fisiología , Dendritas/fisiología , Uniones Comunicantes/fisiología , Interneuronas/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Carbenoxolona/farmacología , Simulación por Computador , Estimulación Eléctrica , Uniones Comunicantes/efectos de los fármacos , Ácido Glutámico/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Masculino , Red Nerviosa/efectos de los fármacos , Redes Neurales de la Computación , Potasio/farmacología , Ratas , Ratas Wistar , Receptores de GABA-A/fisiología , Resorcinoles/farmacología , Umbral Sensorial/fisiología , Estimulación Química
7.
Neuroscience ; 253: 142-54, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23994151

RESUMEN

Noradrenaline (NA) in the hippocampus plays an important role in memory function and has been shown to modulate different forms of synaptic plasticity. Oscillations in the gamma frequency (20-80 Hz) band in the hippocampus have also been proposed to play an important role in memory functions and, evidence from both in vitro and in vivo studies, has suggested this activity can be modulated by NA. However, the role of different NA receptor subtypes in the modulation of gamma frequency activity has not been fully elucidated. We have found that NA (30 µM) exerts a bidirectional control on the magnitude of kainate-evoked (50-200 nM) gamma frequency oscillations in the cornu Ammonis (CA3) region of the rat hippocampus in vitro via activation of different receptor subtypes. Activation of alpha-adrenergic receptors (α-AR) reduced the power of the gamma frequency oscillation. In contrast, activation of beta-adrenergic receptors (ß-AR) caused an increase in the power of the gamma frequency oscillations. Using specific agonists and antagonists of AR receptor subtypes we demonstrated that these effects are mediated specifically via α1A-AR and ß1-AR subtypes. NA activated both receptor subtypes, but the α1A-AR-mediated effect predominated, resulting in a reversible suppression of gamma frequency activity. These results suggest that NA is able to differentially modulate on-going gamma frequency oscillatory activity that could result in either increased or decreased information flow through the hippocampus.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Potenciales de Acción/efectos de los fármacos , Adrenérgicos/farmacología , Análisis de Varianza , Animales , Biofisica , Interacciones Farmacológicas , Estimulación Eléctrica , Agonistas de Aminoácidos Excitadores/farmacología , Análisis de Fourier , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Ácido Kaínico/farmacología , Masculino , Periodicidad , Ratas , Ratas Wistar , Factores de Tiempo
8.
Eur J Neurosci ; 12(11): 4093-106, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11069606

RESUMEN

Carbachol (> 20 microM) and kainate (100 nM) induce, in the in vitro CA3 region, synchronized neuronal population oscillations at approximately 40 Hz having distinctive features: (i) the oscillations persist for hours; (ii) interneurons in kainate fire at 5-20 Hz and their firing is tightly locked to field potential maxima (recorded in s. radiatum); (iii) in contrast, pyramidal cells, in both carbachol and kainate, fire at frequencies as low as 2 Hz, and their firing is less tightly locked to field potentials; (iv) the oscillations require GABAA receptors, AMPA receptors and gap junctions. Using a network of 3072 pyramidal cells and 384 interneurons (each multicompartmental and containing a segment of unmyelinated axon), we employed computer simulations to examine conditions under which network oscillations might occur with the experimentally determined properties. We found that such network oscillations could be generated, robustly, when gap junctions were located between pyramidal cell axons, as suggested to occur based on studies of spontaneous high-frequency (> 100 Hz) network oscillations in the in vitro hippocampus. In the model, pyramidal cell somatic firing was not essential for the oscillations. Critical components of the model are (i) the plexus of pyramidal cell axons, randomly and sparsely interconnected by gap junctions; (ii) glutamate synapses onto interneurons; (iii) synaptic inhibition between interneurons and onto pyramidal cell axons and somata; (iv) a sufficiently high rate of spontaneous action potentials generated in pyramidal cell axons. This model explains the dependence of network oscillations on GABA(A) and AMPA receptors, as well as on gap junctions. Besides the existence of axon-axon gap junctions, the model predicts that many of the pyramidal cell action potentials, during sustained gamma oscillations, are initiated in axons.


Asunto(s)
Carbacol/farmacología , Hipocampo/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Axones/efectos de los fármacos , Axones/fisiología , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/fisiología , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Ácido Kaínico/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Oscilometría , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Receptores AMPA/fisiología , Receptores de GABA-A/fisiología
9.
Epilepsia ; 42(2): 153-70, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11240585

RESUMEN

PURPOSE: We propose an experimentally and clinically testable hypothesis, concerning the origin of very fast (> approximately 70 Hz) EEG oscillations that sometimes precede the onset of focal seizures. These oscillations are important, as they may play a causal role in the initiation of seizures. METHODS: Subdural EEG recordings were obtained from children with focal cortical dysplasias and intractable seizures. Intra- and extracellular recordings were performed in rat hippocampal slices, with induction of population activity, as follows: (a) bath-applied tetramethylamine (an intracellular alkalinizing agent, that opens gap junctions); (b) bath-applied carbachol, a cholinergic agonist; and (c) focal pressure ejection of hypertonic K+ solution. Detailed network simulations were performed, the better to understand the cellular mechanisms underlying oscillations. A major feature of the simulations was inclusion of axon-axon gap junctions between principal neurons, as supported by recent experimental data. RESULTS: Very fast oscillations were found in children before seizure onset, but also superimposed on bursts during the seizure, and on interictal bursts. In slice experiments, very fast oscillations had previously been seen on interictal-like bursts; we now show such oscillations before, between, and after epileptiform bursts. Very fast oscillations were also seen superimposed on gamma (30-70 Hz) oscillations induced by carbachol or hypertonic K+, and in the latter case, very fast oscillations became continuous when chemical synapses were blocked. Simulations replicate these data, when axonal gap junctions are included. CONCLUSIONS: Electrical coupling between principal neurons, perhaps via axonal gap junctions, could underlie very fast population oscillations, in seizure-prone brain, but possibly also in normal brain. The anticonvulsant potential of gap-junction blockers such as carbenoxolone, now in clinical use for treatment of ulcer disease, should be considered.


Asunto(s)
Encéfalo/fisiopatología , Electroencefalografía/estadística & datos numéricos , Uniones Comunicantes/fisiología , Convulsiones/diagnóstico , Animales , Axones/fisiología , Encéfalo/citología , Carbenoxolona/farmacología , Carbenoxolona/uso terapéutico , Electrodos Implantados , Uniones Comunicantes/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Microelectrodos , Neuronas/fisiología , Ratas , Ratas Wistar , Convulsiones/etiología , Convulsiones/fisiopatología , Espacio Subdural , Grabación de Cinta de Video
10.
J Physiol ; 543(Pt 3): 779-93, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12231638

RESUMEN

Theta frequency oscillations are a predominant feature of rhythmic activity in the hippocampus. We demonstrate that hippocampal area CA1 generates atropine-resistant theta population oscillations in response to metabotropic glutamate receptor activation under conditions of reduced AMPA receptor activation. This activity occurred in the absence of inputs from area CA3 and extra-ammonic areas. Field theta oscillations were co-expressed with pyramidal distal apical dendritic burst spiking and were temporally related to trains of IPSPs with slow kinetics. Pyramidal somatic responses showed theta oscillations consisted of compound inhibitory synaptic potentials with initial IPSPs with slow kinetics followed by trains of smaller, faster IPSPs. Pharmacological modulation of IPSPs altered the theta oscillation suggesting an inhibitory network origin. Somatic IPSPs, dendritic burst firing and stratum pyramidale interneuron activity were all temporally correlated with spiking in stratum oriens interneurons demonstrating intrinsic theta-frequency oscillations. Disruption of spiking in these interneurons was accompanied by a loss of both field theta and theta frequency IPSP trains. We suggest that population theta oscillations can be generated as a consequence of intrinsic theta frequency spiking activity in a subset of stratum oriens interneurons controlling electrogenesis in pyramidal cell apical dendrites.


Asunto(s)
Atropina/farmacología , Hipocampo/fisiología , Parasimpatolíticos/farmacología , Ritmo Teta/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Dendritas/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Interneuronas/fisiología , Interneuronas/ultraestructura , Masculino , Inhibición Neural/fisiología , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/fisiología , Receptores de Glutamato Metabotrópico/fisiología
11.
Proc Natl Acad Sci U S A ; 100(19): 11047-52, 2003 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-12960382

RESUMEN

Gamma (30-80 Hz) oscillations occur in mammalian electroencephalogram in a manner that indicates cognitive relevance. In vitro models of gamma oscillations demonstrate two forms of oscillation: one occurring transiently and driven by discrete afferent input and the second occurring persistently in response to activation of excitatory metabotropic receptors. The mechanism underlying persistent gamma oscillations has been suggested to involve gap-junctional communication between axons of principal neurons, but the precise relationship between this neuronal activity and the gamma oscillation has remained elusive. Here we demonstrate that gamma oscillations coexist with high-frequency oscillations (>90 Hz). High-frequency oscillations can be generated in the axonal plexus even when it is physically isolated from pyramidal cell bodies. They were enhanced in networks by nonsomatic gamma-aminobutyric acid type A (GABA(A)) receptor activation, were modulated by perisomatic GABAA receptor-mediated synaptic input to principal cells, and provided the phasic input to interneurons required to generate persistent gamma-frequency oscillations. The data suggest that high-frequency oscillations occurred as a consequence of random activity within the axonal plexus. Interneurons provide a mechanism by which this random activity is both amplified and organized into a coherent network rhythm.


Asunto(s)
Neuronas/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Técnicas In Vitro , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA