Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chem Res Toxicol ; 37(4): 590-599, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488606

RESUMEN

Caenorhabditis elegans is a useful model organism to study the xenobiotic detoxification pathways of various natural and synthetic toxins, but the mechanisms of phase II detoxification are understudied. 1-Hydroxyphenazine (1-HP), a toxin produced by the bacterium Pseudomonas aeruginosa, kills C. elegans. We previously showed that C. elegans detoxifies 1-HP by adding one, two, or three glucose molecules in N2 worms. Our current study evaluates the roles that some UDP-glycosyltransferase (ugt) genes play in 1-HP detoxification. We show that ugt-23 and ugt-49 knockout mutants are more sensitive to 1-HP than reference strains N2 or PD1074. Our data also show that ugt-23 knockout mutants produce reduced amounts of the trisaccharide sugars, while the ugt-49 knockout mutants produce reduced amounts of all 1-HP derivatives except for the glucopyranosyl product compared to the reference strains. We characterized the structure of the trisaccharide sugar phenazines made by C. elegans and showed that one of the sugar modifications contains an N-acetylglucosamine (GlcNAc) in place of glucose. This implies broad specificity regarding UGT function and the role of genes other than ogt-1 in adding GlcNAc, at least in small-molecule detoxification.


Asunto(s)
Caenorhabditis elegans , Glicosiltransferasas , Animales , Glicosilación , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Fenazinas/metabolismo , Uridina Difosfato/metabolismo , Glucosa/metabolismo , Azúcares/metabolismo , Trisacáridos/metabolismo
2.
Anal Chem ; 95(2): 1047-1056, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36595469

RESUMEN

Ion mobility (IM) spectrometry provides semiorthogonal data to mass spectrometry (MS), showing promise for identifying unknown metabolites in complex non-targeted metabolomics data sets. While current literature has showcased IM-MS for identifying unknowns under near ideal circumstances, less work has been conducted to evaluate the performance of this approach in metabolomics studies involving highly complex samples with difficult matrices. Here, we present a workflow incorporating de novo molecular formula annotation and MS/MS structure elucidation using SIRIUS 4 with experimental IM collision cross-section (CCS) measurements and machine learning CCS predictions to identify differential unknown metabolites in mutant strains of Caenorhabditis elegans. For many of those ion features, this workflow enabled the successful filtering of candidate structures generated by in silico MS/MS predictions, though in some cases, annotations were challenged by significant hurdles in instrumentation performance and data analysis. While for 37% of differential features we were able to successfully collect both MS/MS and CCS data, fewer than half of these features benefited from a reduction in the number of possible candidate structures using CCS filtering due to poor matching of the machine learning training sets, limited accuracy of experimental and predicted CCS values, and lack of candidate structures resulting from the MS/MS data. When using a CCS error cutoff of ±3%, on average, 28% of candidate structures could be successfully filtered. Herein, we identify and describe the bottlenecks and limitations associated with the identification of unknowns in non-targeted metabolomics using IM-MS to focus and provide insights into areas requiring further improvement.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Metabolómica/métodos , Aprendizaje Automático , Espectrometría de Movilidad Iónica/métodos
3.
J Biol Chem ; 297(6): 101391, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762909

RESUMEN

Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant subfragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80-85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.


Asunto(s)
Antígenos de Protozoos/metabolismo , Sulfatos de Condroitina/metabolismo , Glicocálix/metabolismo , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/genética , Femenino , Glicocálix/química , Glicocálix/genética , Células HEK293 , Células HeLa , Humanos , Malaria Falciparum/genética , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Placenta/metabolismo , Plasmodium falciparum/genética , Embarazo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
4.
Anal Chem ; 93(36): 12374-12382, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34460220

RESUMEN

Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap mass spectrometry (MS) are among the highest-performing analytical platforms used in metabolomics. Non-targeted metabolomics experiments, however, yield extremely complex datasets that make metabolite annotation very challenging and sometimes impossible. The high-resolution accurate mass measurements of the leading MS platforms greatly facilitate this process by reducing mass errors and spectral overlaps. When high resolution is combined with relative isotopic abundance (RIA) measurements, heuristic rules, and constraints during searches, the number of candidate elemental formula(s) can be significantly reduced. Here, we evaluate the performance of Orbitrap ID-X and 12T solariX FT-ICR mass spectrometers in terms of mass accuracy and RIA measurements and how these factors affect the assignment of the correct elemental formulas in the metabolite annotation pipeline. Quality of the mass measurements was evaluated under various experimental conditions (resolution: 120, 240, 500 K; automatic gain control: 5 × 104, 1 × 105, 5 × 105) for the Orbitrap MS platform. High average mass accuracy (<1 ppm for UPLC-Orbitrap MS and <0.2 ppm for direct infusion FT-ICR MS) was achieved and allowed the assignment of correct elemental formulas for over 90% (m/z 75-466) of the 104 investigated metabolites. 13C1 and 18O1 RIA measurements further improved annotation certainty by reducing the number of candidates. Overall, our study provides a systematic evaluation for two leading Fourier transform (FT)-based MS platforms utilized in metabolite annotation and provides the basis for applying these, individually or in combination, to metabolomics studies of biological systems.


Asunto(s)
Ciclotrones , Metabolómica , Análisis de Fourier , Iones , Espectrometría de Masas
5.
Anal Chem ; 91(9): 6019-6026, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30932467

RESUMEN

Structural characterization of sulfated glycosaminoglycans (GAGs) by mass spectrometry has long been a formidable analytical challenge owing to their high structural variability and the propensity for sulfate decomposition upon activation with low-energy ion activation methods. While derivatization and complexation workflows have aimed to generate informative spectra using low-energy ion activation methods, alternative ion activation methods present the opportunity to obtain informative spectra from native GAG structures. Both electron- and photon-based activation methods, including electron detachment dissociation (EDD), negative electron transfer dissociation (NETD), and extreme ultraviolet photon activation, have been explored previously to overcome the limitations associated with low-energy activation methods for GAGs and other sulfated oligosaccharides. Further, implementation of such methods on high-resolution mass spectrometers has aided the interpretation of the complex spectra generated. Here, we explore ultraviolet photodissociation (UVPD) implemented on an Orbitrap mass spectrometer as another option for structural characterization of GAGs. UVPD spectra for both dermatan and heparan sulfate structures display extensive fragmentation including both glycosidic and cross-ring cleavages with the extent of sulfate retention comparable to that observed by EDD and NETD. In addition, the relatively short activation time of UVPD makes it promising for higher throughput analysis of GAGs in complex mixtures.


Asunto(s)
Electrones , Glicosaminoglicanos/química , Espectrometría de Masas/métodos , Fotones , Rayos Ultravioleta
6.
Int J Mass Spectrom ; 4452019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32641905

RESUMEN

Glycosaminoglycans (GAGs) are important biological molecules that are highly anionic and occur in nature as complex mixtures. A platform that combines capillary zone electrophoresis (CZE) separations with mass spectrometry (MS) and gas-phase sequencing by using negative electron transfer dissociation (NETD) is shown to be efficacious for the structural analysis of GAG mixtures. CZE is a separation method well suited to the highly negatively charged nature of GAGs. NETD is an electron-based ion activation method that enables the generation of informative fragments with retention of the labile sulfate half-ester modification that determine specific GAG function. Here we combine for the first time NETD and CZE for assigning the structures of GAG oligomers present in mixtures. The speed of ion activation by NETD is found to couple well with the narrow peaks resulting from CZE migration. The platform was optimized with mixtures of GAG tetrasaccharide standards. The potential of the platform is demonstrated by the analysis of enoxaparin, a complex mixture of low molecular weight heparins, which was separated by CZE within 30 minutes and characterized by NETD MS/MS in one online experiment. 37 unique molecular compositions have been identified in enoxaparin using CZE-MS and 9 structures have been assigned with CZE-NETD-MS/MS.

7.
J Am Chem Soc ; 139(46): 16986-16995, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29111696

RESUMEN

Glycomics represents one of the last frontiers and most challenging in omic analysis. Glycosylation occurs in the endoplasmic reticulum and the Golgi organelle and its control is neither well-understood nor predictable based on proteomic or genomic analysis. One of the most structurally complex classes of glycoconjugates is the proteoglycans (PGs) and their glycosaminoglycan (GAG) side chains. Previously, our laboratory solved the structure of the chondroitin sulfate chain of the bikunin PG. The current study examines the much more complex structure of the dermatan sulfate GAG chain of decorin PG. By utilizing sophisticated separation methods followed by compositional analysis, domain mapping, and tandem mass spectrometry coupled with analysis by a modified genetic algorithm approach, the structural motif for the decorin dermatan sulfate chain was determined. This represents the second example of a GAG with a prominent structural motif, suggesting that the structural variability of this class of glycoconjugates is somewhat simpler than had been expected.


Asunto(s)
Decorina/química , Dermatán Sulfato/química , Algoritmos , Animales , Decorina/aislamiento & purificación , Dermatán Sulfato/aislamiento & purificación , Porcinos
8.
Nat Chem Biol ; 7(11): 827-33, 2011 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-21983600

RESUMEN

Proteoglycans are complex glycoconjugates that regulate critical biological pathways in all higher organisms. Bikunin, the simplest proteoglycan, with a single glycosaminoglycan chain, is a serine protease inhibitor used to treat acute pancreatitis. Unlike nucleic acids and proteins, whose synthesis is template driven, Golgi-synthesized glycosaminoglycans are not believed to have predictable or deterministic sequences. Bikunin peptidoglycosaminoglycans were prepared and fractionated to obtain a collection of size-similar and charge-similar chains. Fourier transform mass spectral analysis identified a small number of parent molecular ions corresponding to monocompositional peptidoglycosaminoglycans. Fragmentation using collision-induced dissociation unexpectedly afforded a single sequence for each monocompositional parent ion, unequivocally demonstrating the presence of a defined sequence. The biosynthetic pathway common to all proteoglycans suggests that even more structurally complex proteoglycans, such as heparan sulfate, may have defined sequences, requiring a readjustment in the understanding of information storage in complex glycans.


Asunto(s)
alfa-Globulinas/química , Glicosaminoglicanos/metabolismo , Proteoglicanos/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Análisis de Fourier , Glicosaminoglicanos/genética , Espectrometría de Masas
9.
Anal Bioanal Chem ; 405(18): 6069-76, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23685962

RESUMEN

Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy, and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 µm spatial resolution (75 µm primary ion spot size) with mass resolving power (m/Δm(50%)) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm(50%) > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 µm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.


Asunto(s)
Encéfalo/fisiología , Espectrometría de Masa de Ion Secundario/métodos , Animales , Química Encefálica , Calibración , Ciclotrones , Diagnóstico por Imagen/métodos , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador , Masculino , Fosfolípidos/análisis , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Espectrometría de Masa de Ion Secundario/instrumentación
10.
Proc Natl Acad Sci U S A ; 107(28): 12646-51, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20616019

RESUMEN

Aberrant cell-surface glycosylation patterns are present on virtually all tumors and have been linked to tumor progression, metastasis, and invasivity. We have shown that expressing a normally quiescent, glycoprotein-specific alpha2,6-sialyltransferase (ST6Gal1) gene in gliomas inhibited invasivity in vitro and tumor formation in vivo. To identify other glycogene targets with therapeutic potential, we created a focused 45-mer oligonucleotide microarray platform representing all of the cloned human glycotranscriptome and examined the glycogene expression profiles of 10 normal human brain specimens, 10 malignant gliomas, and 7 human glioma cell lines. Among the many significant changes in glycogene expression observed, of particular interest was the observation that an additional alpha2,6-sialyltransferase, ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha2,6-sialyltransferase 5 (ST6GalNAcV), was expressed at very low levels in all glioma and glioma cell lines examined compared with normal brain. ST6GalNAcV catalyzes the formation of the terminal alpha2,6-sialic acid linkages on gangliosides. Stable transfection of ST6GalNAcV into U373MG glioma cells produced (i) no change in alpha2,6-linked sialic acid-containing glycoproteins, (ii) increased expression of GM2alpha and GM3 gangliosides and decreased expression of GM1b, Gb3, and Gb4, (iii) marked inhibition of in vitro invasivity, (iv) modified cellular adhesion to fibronectin and laminin, (v) increased adhesion-mediated protein tyrosine phosphorylation of HSPA8, and (vi) inhibition of tumor growth in vivo. These results strongly suggest that modulation of the synthesis of specific glioma cell-surface glycosphingolipids alters invasivity in a manner that may have significant therapeutic potential.


Asunto(s)
Glioma/metabolismo , Glioma/patología , Sialiltransferasas/metabolismo , Animales , Fenómenos Bioquímicos , Encéfalo/metabolismo , Encéfalo/patología , Adhesión Celular/genética , Línea Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Fibronectinas/genética , Fibronectinas/metabolismo , Gangliósidos/genética , Gangliósidos/metabolismo , Genes , Glioma/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Humanos , Ratones , Ratones SCID , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Sialiltransferasas/genética , Transfección
11.
J Chromatogr A ; 1696: 463976, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37054634

RESUMEN

While the most sensitive LC-MS methods for oligonucleotide analysis contain ion-pairs in the mobile phase, these modifiers have been associated with instrument contamination and ion suppression. Typically, entire LC-MS systems are reserved for oligonucleotide LC-MS when using ion-pairing buffers. To overcome these limitations, numerous HILIC methods, liberated from ion-pairs, have been recently developed. Since ion-pairs play a role in analyte desorption from ESI droplets, their removal from mobile phases tend to impact method sensitivity. An effective way to recover MS sensitivity is to reduce the LC flow rate and therefore reduce ESI droplet size. With a focus on MS sensitivity, this study investigates the applicability of a microflow LC- nanoelectrospray MS platform in oligonucleotide ion-pair RP and HILIC LC-MS methods. The platform is effective and substantially increased the MS sensitivity of HILIC methods. Furthermore, LC method development for both types of separations provide insight into microflow chromatography of oligonucleotides, an under investigated chromatographic scale.


Asunto(s)
Oligonucleótidos , Espectrometría de Masa por Ionización de Electrospray , Oligonucleótidos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Liquida/métodos , Indicadores y Reactivos
12.
Int J Mass Spectrom ; 330-332: 152-159, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23230388

RESUMEN

Glycosaminoglycan (GAG) carbohydrates provide a challenging analytical target for structural determination due to their polydisperse nature, non-template biosynthesis, and labile sulfate modifications. The resultant structures, although heterogeneous, contain domains which indicate a sulfation pattern or code that correlates to specific function. Mass spectrometry, in particular electron detachment dissociation Fourier transform ion cyclotron resonance (EDD FT-ICR MS), provides a highly sensitive platform for GAG structural analysis by providing cross-ring cleavages for sulfation location and product ions specific to hexuronic acid stereochemistry. To investigate the effect of sulfation pattern and variations in stereochemistry on EDD spectra, a series of synthetic heparan sulfate (HS) tetrasaccharides are examined. Whereas previous studies have focused on lowly sulfated compounds (0.5-1 sulfate groups per disaccharide), the current work extends the application of EDD to more highly sulfated tetrasaccharides (1-2 sulfate groups per disaccharide) and presents the first EDD of a tetrasaccharide containing a sulfated hexuronic acid. For these more highly sulfated HS oligomers, alternative strategies are shown to be effective for extracting full structural details. These strategies inlcude sodium cation replacement of protons, for determining the sites of sulfation, and desulfation of the oligosaccharides for the generation of product ions for assigning uronic acid stereochemistry.

13.
Front Mol Biosci ; 9: 930204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438654

RESUMEN

Untargeted metabolomics studies are unbiased but identifying the same feature across studies is complicated by environmental variation, batch effects, and instrument variability. Ideally, several studies that assay the same set of metabolic features would be used to select recurring features to pursue for identification. Here, we developed an anchored experimental design. This generalizable approach enabled us to integrate three genetic studies consisting of 14 test strains of Caenorhabditis elegans prior to the compound identification process. An anchor strain, PD1074, was included in every sample collection, resulting in a large set of biological replicates of a genetically identical strain that anchored each study. This enables us to estimate treatment effects within each batch and apply straightforward meta-analytic approaches to combine treatment effects across batches without the need for estimation of batch effects and complex normalization strategies. We collected 104 test samples for three genetic studies across six batches to produce five analytical datasets from two complementary technologies commonly used in untargeted metabolomics. Here, we use the model system C. elegans to demonstrate that an augmented design combined with experimental blocks and other metabolomic QC approaches can be used to anchor studies and enable comparisons of stable spectral features across time without the need for compound identification. This approach is generalizable to systems where the same genotype can be assayed in multiple environments and provides biologically relevant features for downstream compound identification efforts. All methods are included in the newest release of the publicly available SECIMTools based on the open-source Galaxy platform.

14.
Int J Mass Spectrom ; 305(2-3): 109-115, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21860600

RESUMEN

A mixture of glycosaminoglycan (GAG) chains from a plasma proteoglycan bikunin was fractionated using native, continuous-elution polyacrylamide gel electrophoresis, and the resulting fractions were analyzed by electrospray ionization Fourier transform mass spectrometry (ESI FTMS). Molecular mass analysis of the intact GAG afforded information about the length and composition of GAG chains in the mixture. Ambiguity in the interpretation of the intact GAG mass spectra was eliminated by conducting an additional experiment in which the GAG chains of known molecular mass were treated with a GAG-degrading enzyme, chondroitinase ABC, and the digestion products were analyzed by ESI FTMS. The plasma bikunin GAG chains consisted predominantly of odd number of saccharides, although few chains consisting of even number of saccharides were also detected. Majority of the analyzed chains were tetrasulfated or pentasulfated and comprised by 29 to 41 monosaccharides.

15.
Int J Mass Spectrom ; 308(2-3): 253-259, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22247649

RESUMEN

Heparin glycosaminoglycans (GAGs) present the most difficult glycoform for analytical characterization due to high levels of sulfation and structural heterogeneity. Recent contamination of the clinical heparin supply and subsequent fatalities has highlighted the need for sensitive methodologies of analysis. In the last decade, tandem mass spectrometry has been increasingly applied for the analysis of GAGs, but developments in the characterization of highly sulfated compounds have been minimal due to the low number of cross-ring cleavages generated by threshold ion activation by collisional induced dissociation (CID). In the current work, electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) are applied to a series of heparin tetrasaccharides. With both activation methods, abundant glycosidic and cross-ring cleavages are observed. The concept of Ionized Sulfate Criteria (ISC) is presented as a succinct method for describing the charge state, degree of ionization and sodium/proton exchange in the precursor ion. These factors contribute to the propensity for useful fragmentation during MS/MS measurements. Precursors with ISC values of 0 are studied here, and shown to yield adequate structural information from ion activation by EDD or IRMPD.

16.
Eur J Mass Spectrom (Chichester) ; 17(2): 167-76, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21719917

RESUMEN

Electron transfer through gas phase ion-ion reactions has led to the widespread application of electron- based techniques once only capable in ion trapping mass spectrometers. Although any mass analyzer can in theory be coupled to an ion-ion reaction device (typically a 3-D ion trap), some systems of interest exceed the capabilities of most mass spectrometers. This case is particularly true in the structural characterization of glycosaminoglycan (GAG) oligosaccharides. To adequately characterize highly sulfated GAGs or oligosaccharides above the tetrasaccharide level, a high resolution mass analyzer is required. To extend previous efforts on an ion trap mass spectrometer, negative electron transfer dissociation coupled with a Fourier transform ion cyclotron resonance mass spectrometer has been applied to increasingly sulfated heparan sulfate and heparin tetrasaccharides as well as a dermatan sulfate octasaccharide. Results similar to those obtained by electron detachment dissociation are observed.


Asunto(s)
Análisis de Fourier , Glicosaminoglicanos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Secuencia de Carbohidratos , Dermatán Sulfato/química , Heparitina Sulfato/química , Modelos Moleculares , Datos de Secuencia Molecular , Porcinos
17.
J Am Soc Mass Spectrom ; 32(7): 1759-1770, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096288

RESUMEN

Glycosaminoglycans (GAGs) are linear polysaccharides that participate in a broad range of biological functions. Their incomplete biosynthesis pathway leads to nonuniform chains and complex mixtures. For this reason, the characterization of GAGs has been a difficult hurdle for the analytical community. Recently, ultraviolet photodissociation (UVPD) has emerged as a useful tool for determining sites of modification within a GAG chain. Here, we investigate the ability for UVPD to distinguish chondroitin sulfate epimers and the effects of UVPD experimental parameters on fragmentation efficiency. Chondroitin sulfate A (CS-A) and chondroitin sulfate B (CS-B), commonly referred to as dermatan sulfate (DS), differ only in C-5 uronic acid stereochemistry. This uronic acid difference can influence GAG-protein binding and therefore can alter the specific biological function of a GAG chain. Prior tandem mass spectrometry methods investigated for the elucidation of GAG structures also have difficulty differentiating 4-O from 6-O sulfation in chondroitin sulfate GAGs. Preliminary data using UVPD to characterize GAGs showed a promising ability to characterize 4-O sulfation in CS-A GAGs. Here, we look in depth at the capability of UVPD to distinguish chondroitin sulfate C-5 diastereomers and the role of key experimental parameters in making this distinction. Results using a 193 nm excimer laser and a 213 nm solid-state laser are compared for this study. The effect of precursor ionization state, the number of laser pulses (193 or 213 nm UVPD), and the use of the low-pressure versus high-pressure trap are investigated.

18.
Anal Chem ; 82(9): 3460-6, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20380445

RESUMEN

Structural characterization of glycosaminoglycans (GAGs) has been a challenge in the field of mass spectrometry, and the application of electron detachment dissociation (EDD) Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has shown great promise to GAG oligosaccharide characterization in a single tandem mass spectrometry experiment. In this work, we apply the technique of negative electron transfer dissociation (NETD) to GAGs on a commercial ion trap mass spectrometer. NETD of GAGs, using fluoranthene or xenon as the reagent gas, produces fragmentation very similar to previously observed EDD fragmentation. Using fluoranthene or xenon, both glycosidic and cross-ring cleavages are observed, as well as even- and odd-electron products. The loss of SO(3) can be minimized and an increase in cross-ring cleavages is observed if a negatively charged carboxylate is present during NETD, which can be controlled by the charge state or the addition of sodium. NETD effectively dissociates GAGs up to eight saccharides in length, but the low resolution of the ion trap makes assigning product ions difficult. Similar to EDD, NETD is also able to distinguish the epimers iduronic acid from glucuronic acid in heparan sulfate tetrasaccharides and suggests that a radical intermediate plays an important role in distinguishing these epimers. These results demonstrate that NETD is effective at characterizing GAG oligosaccharides in a single tandem mass spectrometry experiment on a widely available mass spectrometry platform.


Asunto(s)
Electrones , Glicosaminoglicanos/química , Espectrometría de Masas en Tándem
19.
J Am Chem Soc ; 131(47): 17394-405, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19904943

RESUMEN

Although hundreds of heparan sulfate binding proteins have been identified and implicated in a myriad of physiological and pathological processes, very little information is known about the ligand requirements for binding and mediating biological activities by these proteins. This difficulty results from a lack of technology for establishing structure-activity relationships, which in turn is due to the structural complexity of natural heparan sulfate (HS) and difficulties of preparing well-defined HS oligosaccharides. To address this deficiency, we developed a modular approach for the parallel combinatorial synthesis of HS oligosaccharides that utilizes a relatively small number of selectively protected disaccharide building blocks, which can easily be converted into glycosyl donors and acceptors. The utility of the modular building blocks has been demonstrated by the preparation of a library of 12 oligosaccharides, which has been employed to probe the structural features of HS for inhibiting the protease, BACE-1. The complex variations in activity with structural changes support the view that important functional information is embedded in HS sequences. Furthermore, the most active derivative provides an attractive lead compound for the preparation of more potent compounds, which may find use as a therapeutic agent for Alzheimer's disease.


Asunto(s)
Heparitina Sulfato/síntesis química , Secuencia de Carbohidratos , Heparitina Sulfato/química , Datos de Secuencia Molecular , Relación Estructura-Actividad
20.
Int J Mass Spectrom ; 276(2-3): 110-115, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19802340

RESUMEN

The efficiency of conversion of precursor ions to observable products for electron detachment dissociation (EDD) was measured as a function of the key experimental parameters to determine their optimal values for the Fourier transform mass spectrometry analysis of anionic glycosaminoglycan carbohydrates. These parameters include electron current, electron energy, dispenser cathode heater current, electron beam duration, charge state of the precursor ion, oligomer length, and precursor ion number accumulated in an external radio frequency multipole trap. Precursor conversion is most efficient at an electron current of 15 µA, and decreases at higher and lower values. The conversion of precursor to product ions increases in efficiency as the electron pulse duration is increased. Together, these data suggest that a radially repulsive electric field is produced between the electron beam and negative ions during EDD which causes the reaction cross section to decrease at higher values of electron current (>15 µA). Elevating the heater current of the dispenser cathode increases the electron flux, but also causes ion activation, presumably by blackbody infrared irradiation. An electronic circuit is described that allows the electron current produced by the dispenser cathode to be measured during an EDD or electron capture dissociation (ECD) experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA