Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36081061

RESUMEN

Road surface properties have a major impact on pavement's life service conditions. Nowadays, contactless techniques are widely used to monitor road surfaces due to their portability and high precision. Among the different possibilities, laser profilometers are widely used, even though they have two major drawbacks: spatial information is missed and the cost of the equipment is considerable. The scope of this work is to show the methodology used to develop a fast and low-cost system using images taken with a commercial camera to recover the height information of the road surface using Convolutional Neural Networks. Hence, the dataset was created ad hoc. Based on photometric theory, a closed black-box with four light sources positioned around the surface sample was built. The surface was provided with markers in order to link the ground truth measurements carried out with a laser profilometer and their corresponding intensity values. The proposed network was trained, validated and tested on the created dataset. Three loss functions where studied. The results showed the Binary Cross Entropy loss to be the most performing and the best overall on the reconstruction task. The methodology described in this study shows the feasibility of a low-cost system using commercial cameras based on Artificial Intelligence.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación
2.
Sensors (Basel) ; 21(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066242

RESUMEN

This paper proposes a methodology for correlating products derived by Synthetic Aperture Radar (SAR) measurements and laser profilometric road roughness surveys. The procedure stems from two previous studies, in which several Machine Learning Algorithms (MLAs) have been calibrated for predicting the average vertical displacement (in terms of mm/year) of road pavements as a result of exogenous phenomena occurrence, such as subsidence. Such algorithms are based on surveys performed with Persistent Scatterer Interferometric SAR (PS-InSAR) over an area of 964 km2 in the Tuscany Region, Central Italy. Starting from this basis, in this paper, we propose to integrate the information provided by these MLAs with 10 km of in situ profilometric measurements of the pavement surface roughness and relative calculation of the International Roughness Index (IRI). Accordingly, the aim is to appreciate whether and to what extent there is an association between displacements estimated by MLAs and IRI values. If a dependence exists, we may argue that road regularity is driven by exogenous phenomena and MLAs allow for the replacement of in situ surveys, saving considerable time and money. In this research framework, results reveal that there are several road sections that manifest a clear association among these two methods, while others denote that the relationship is weaker, and in situ activities cannot be bypassed to evaluate the real pavement conditions. We could wrap up that, in these stretches, the road regularity is driven by endogenous factors which MLAs did not integrate during their training. Once additional MLAs conditioned by endogenous factors have been developed (such as traffic flow, the structure of the pavement layers, and material characteristics), practitioners should be able to estimate the quality of pavement over extensive and complex road networks quickly, automatically, and with relatively low costs.

3.
Int J Inj Contr Saf Promot ; 29(4): 450-462, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35613339

RESUMEN

Four Accident Prediction Models have been defined for Italian two-lane rural, suburban, and urban roads by exploiting different Machine Learning Algorithms. Specifically, a Classification and Regression Tree, a Boosted Regression Tree, a Random Forest, and a Support Vector Machine have been implemented to predict the number of Fatal and Injury crashes on a 905-km network, which experienced 5,802 FI crashes in 2008-2016. The dataset incorporates geometrical, functional, and environmental information. Several performance metrics have been computed, such as Determination Coefficient, Mean Absolute Error, Root Mean Square Error, and scatterplots. Outcomes suggest that Support Vector Machine outperforms the other Machine Learning Algorithms for predicting Fatal and Injury crashes. In Addition, the computation of Predictor Importance shows that traffic flow, the density of intersections, driveway density, and type of area are the most impacting factors on crash likelihood. Road authorities may use these findings for conducting reliable safety analyses.


Asunto(s)
Accidentes de Tránsito , Modelos Estadísticos , Humanos , Algoritmos , Italia , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA