Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 44(10): 827-836, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31133362

RESUMEN

The ability of mammalian cells to correctly identify and degrade misfolded secretory proteins, most of them bearing N-glycans, is crucial for their correct function and survival. An inefficient disposal mechanism results in the accumulation of misfolded proteins and consequent endoplasmic reticulum (ER) stress. N-glycan processing creates a code that reveals the folding status of each molecule, enabling continued folding attempts or targeting of the doomed glycoprotein for disposal. We review here the main steps involved in the accurate processing of unfolded glycoproteins. We highlight recent data suggesting that the processing is not stochastic, but that there is selective accelerated glycan trimming on misfolded glycoprotein molecules.


Asunto(s)
Glicoproteínas/metabolismo , Estrés del Retículo Endoplásmico , Glicoproteínas/química , Humanos , Polisacáridos/química , Polisacáridos/metabolismo , Pliegue de Proteína
2.
J Biol Chem ; 297(5): 101299, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34648767

RESUMEN

The Sigma-1 receptor (S1R) is a transmembrane protein with important roles in cellular homeostasis in normal physiology and in disease. Especially in neurodegenerative diseases, S1R activation has been shown to provide neuroprotection by modulating calcium signaling, mitochondrial function and reducing endoplasmic reticulum (ER) stress. S1R missense mutations are one of the causes of the neurodegenerative Amyotrophic Lateral Sclerosis and distal hereditary motor neuronopathies. Although the S1R has been studied intensively, basic aspects remain controversial, such as S1R topology and whether it reaches the plasma membrane. To address these questions, we have undertaken several approaches. C-terminal tagging with a small biotin-acceptor peptide and BirA biotinylation in cells suggested a type II membrane orientation (cytosolic N-terminus). However, N-terminal tagging gave an equal probability for both possible orientations. This might explain conflicting reports in the literature, as tags may affect the protein topology. Therefore, we studied untagged S1R using a protease protection assay and a glycosylation mapping approach, introducing N-glycosylation sites. Both methods provided unambiguous results showing that the S1R is a type II membrane protein with a short cytosolic N-terminal tail. Assessments of glycan processing, surface fluorescence-activated cell sorting, and cell surface biotinylation indicated ER retention, with insignificant exit to the plasma membrane, in the absence or presence of S1R agonists or of ER stress. These findings may have important implications for S1R-based therapeutic approaches.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Receptores sigma/metabolismo , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Receptores sigma/genética , Receptor Sigma-1
3.
J Neurochem ; 158(2): 467-481, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33871049

RESUMEN

The endoplasmic reticulum (ER)-localized Sigma-1 receptor (S1R) is neuroprotective in models of neurodegenerative diseases, among them Huntington disease (HD). Recent clinical trials in HD patients and preclinical studies in cellular and mouse HD models suggest a therapeutic potential for the high-affinity S1R agonist pridopidine. However, the molecular mechanisms of the cytoprotective effect are unclear. We have previously reported strong induction of ER stress by toxic mutant huntingtin (mHtt) oligomers, which is reduced upon sequestration of these mHtt oligomers into large aggregates. Here, we show that pridopidine significantly ameliorates mHtt-induced ER stress in cellular HD models, starting at low nanomolar concentrations. Pridopidine reduced the levels of markers of the three branches of the unfolded protein response (UPR), showing the strongest effects on the PKR-like endoplasmic reticulum kinase (PERK) branch. The effect is S1R-dependent, as it is abolished in cells expressing mHtt in which the S1R was deleted using CRISPR/Cas9 technology. mHtt increased the level of the detergent-insoluble fraction of S1R, suggesting a compensatory cellular mechanism that responds to increased ER stress. Pridopidine further enhanced the levels of insoluble S1R, suggesting the stabilization of activated S1R oligomers. These S1R oligomeric species appeared in ER-localized patches, and not in the mitochondria-associated membranes nor the ER-derived quality control compartment. The colocalization of S1R with the chaperone BiP was significantly reduced by mHtt, and pridopidine restored this colocalization to normal, unstressed levels. Pridopidine increased toxic oligomeric mHtt recruitment into less toxic large sodium dodecyl sulfate-insoluble aggregates, suggesting that this in turn reduces ER stress and cytotoxicity.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteína Huntingtina/genética , Proteína Huntingtina/toxicidad , Piperidinas/farmacología , Receptores sigma/efectos de los fármacos , Células 3T3 , Animales , Sistemas CRISPR-Cas , Chaperón BiP del Retículo Endoplásmico , Técnicas de Inactivación de Genes , Células HEK293 , Proteínas de Choque Térmico , Humanos , Ratones , Membranas Mitocondriales/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Receptor Sigma-1
4.
J Biol Chem ; 294(44): 15912-15913, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676555

RESUMEN

The generation of free N-glycans, or unconjugated oligosaccharides derived from N-linked glycoproteins, is well understood, but whether a similar fate awaits O-linked glycoprotein carbohydrates was unknown. Hirayama et al. now reveal, by using only mannose as an energy source, the generation of free O-glycans in Saccharomyces cerevisiae, in the lumen of a secretory compartment, possibly the vacuole. These findings uncover the presence of a possible regulated degradation pathway for O-mannosylated glycoproteins.


Asunto(s)
Glicoproteínas , Saccharomyces cerevisiae , Glicosilación , Manosa , Oligosacáridos , Polisacáridos
5.
Acta Neuropathol ; 140(5): 737-764, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32642868

RESUMEN

Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.


Asunto(s)
Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Humanos , Factor II del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Transgénicos , Agregado de Proteínas/efectos de los fármacos
6.
Semin Cell Dev Biol ; 41: 99-109, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25460542

RESUMEN

The internal environment of the eukaryotic cell is divided by membranes into various organelles, containing diverse functional subcompartments, which allow complex cellular life. The quality control of newly made secretory proteins relies on the ability of the endoplasmic reticulum (ER) to segregate and compartmentalize molecules at different folding states. These folding states are communicated by N-glycans present on most secretory proteins. In ER-associated degradation (ERAD), protein molecules that have been identified as terminally misfolded are sent for degradation at the cytosolic proteasomes after being dislocated from the ER to the cytosol. This review will focus on how misfolded glycoprotein molecules are segregated from their properly folded counterparts and targeted to ERAD. The pathway involves compartmentalization, which is intimately linked to differential N-glycan processing. Recent data suggests that these processes are very dynamic, and include transient assembly of ERAD machinery complexes.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Compartimento Celular , Glicoproteínas/química , Humanos , Modelos Biológicos , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
7.
J Cell Sci ; 126(Pt 17): 3893-903, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23843619

RESUMEN

The palmitoylation of calnexin serves to enrich calnexin on the mitochondria-associated membrane (MAM). Given a lack of information on the significance of this finding, we have investigated how this endoplasmic reticulum (ER)-internal sorting signal affects the functions of calnexin. Our results demonstrate that palmitoylated calnexin interacts with sarcoendoplasmic reticulum (SR) Ca(2+) transport ATPase (SERCA) 2b and that this interaction determines ER Ca(2+) content and the regulation of ER-mitochondria Ca(2+) crosstalk. In contrast, non-palmitoylated calnexin interacts with the oxidoreductase ERp57 and performs its well-known function in quality control. Interestingly, our results also show that calnexin palmitoylation is an ER-stress-dependent mechanism. Following a short-term ER stress, calnexin quickly becomes less palmitoylated, which shifts its function from the regulation of Ca(2+) signaling towards chaperoning and quality control of known substrates. These changes also correlate with a preferential distribution of calnexin to the MAM under resting conditions, or the rough ER and ER quality control compartment (ERQC) following ER stress. Our results have therefore identified the switch that assigns calnexin either to Ca(2+) signaling or to protein chaperoning.


Asunto(s)
Calnexina/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Lipoilación/fisiología , Membranas Mitocondriales/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Células 3T3 , Animales , Calcio/metabolismo , Señalización del Calcio , Línea Celular , Retículo Endoplásmico/metabolismo , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Ratones , Mitocondrias/metabolismo , Proteína Disulfuro Isomerasas/metabolismo
8.
J Biol Chem ; 288(4): 2167-78, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23233672

RESUMEN

Studies of misfolded protein targeting to endoplasmic reticulum-associated degradation (ERAD) have largely focused on glycoproteins, which include the bulk of the secretory proteins. Mechanisms of targeting of nonglycosylated proteins are less clear. Here, we studied three nonglycosylated proteins and analyzed their use of known glycoprotein quality control and ERAD components. Similar to an established glycosylated ERAD substrate, the uncleaved precursor of asialoglycoprotein receptor H2a, its nonglycosylated mutant, makes use of calnexin, EDEM1, and HRD1, but only glycosylated H2a is a substrate for the cytosolic SCF(Fbs2) E3 ubiquitin ligase with lectin activity. Two nonglycosylated BiP substrates, NS-1κ light chain and truncated Igγ heavy chain, interact with the ERAD complex lectins OS-9 and XTP3-B and require EDEM1 for degradation. EDEM1 associates through a region outside of its mannosidase-like domain with the nonglycosylated proteins. Similar to glycosylated substrates, proteasomal inhibition induced accumulation of the nonglycosylated proteins and ERAD machinery in the endoplasmic reticulum-derived quality control compartment. Our results suggest a shared ERAD pathway for glycosylated and nonglycosylated proteins composed of luminal lectin machinery components also capable of protein-protein interactions.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Animales , Chaperoninas/química , Citosol/metabolismo , Glicosilación , Células HEK293 , Humanos , Cadenas kappa de Inmunoglobulina/química , Lectinas/química , Manosidasas/química , Ratones , Células 3T3 NIH , Polisacáridos/química , Desnaturalización Proteica , Pliegue de Proteína
9.
Neurotherapeutics ; 21(2): e00335, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368172

RESUMEN

There is currently no disease-modifying therapy for Huntington's disease (HD). We recently described a small molecule, MK-28, which restored homeostasis in HD models by specifically activating PKR-like ER kinase (PERK). This activation boosts the unfolded protein response (UPR), thereby reducing endoplasmic reticulum (ER) stress, a central cytotoxic mechanism in HD and other neurodegenerative diseases. Here, we have tested the long-term effects of MK-28 in HD model mice. R6/2 CAG (160) mice were treated by lifetime intraperitoneal injections 3 times a week. CatWalk measurements of motor function showed strong improvement compared to untreated mice after only two weeks of MK-28 treatment and continued with time, most significantly at 1 â€‹mg/kg MK-28, approaching WT values. Seven weeks treatment significantly improved paw grip strength. Body weight recovered and glucose levels, which are elevated in HD mice, were significantly reduced. Treatment with another PERK activator, CCT020312 at 1 â€‹mg/kg, also caused amelioration, consistent with PERK activation. Lifespan, measured in more resilient R6/2 CAG (120) mice with daily IP injection, was much extended by 16 days (20%) with 0.3 â€‹mg/kg MK-28, and by 38 days (46%) with 1 â€‹mg/kg MK-28. No toxicity, measured by weight, blood glucose levels and blood liver function markers, was detectable in WT mice treated for 6 weeks with 6 â€‹mg/kg MK-28. Boosting of PERK activity by long-term treatment with MK-28 could be a safe and promising therapeutic approach for HD.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Huntington/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico
10.
iScience ; 26(3): 106232, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876137

RESUMEN

Misfolded proteins and components of the endoplasmic reticulum (ER) quality control and ER associated degradation (ERAD) machineries concentrate in mammalian cells in the pericentriolar ER-derived quality control compartment (ERQC), suggesting it as a staging ground for ERAD. By tracking the chaperone calreticulin and an ERAD substrate, we have now determined that the trafficking to the ERQC is reversible and recycling back to the ER is slower than the movement in the ER periphery. The dynamics suggest vesicular trafficking rather than diffusion. Indeed, using dominant negative mutants of ARF1 and Sar1 or the drugs Brefeldin A and H89, we observed that COPI inhibition causes accumulation in the ERQC and increases ERAD, whereas COPII inhibition has the opposite effect. Our results suggest that targeting of misfolded proteins to ERAD involves COPII-dependent transport to the ERQC and that they can be retrieved to the peripheral ER in a COPI-dependent manner.

11.
J Biol Chem ; 286(2): 1292-300, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21062743

RESUMEN

Although the trimming of α1,2-mannose residues from precursor N-linked oligosaccharides is an essential step in the delivery of misfolded glycoproteins to endoplasmic reticulum (ER)-associated degradation (ERAD), the exact role of this trimming is unclear. EDEM1 was initially suggested to bind N-glycans after mannose trimming, a role presently ascribed to the lectins OS9 and XTP3-B, because of their in vitro affinities for trimmed oligosaccharides. We have shown before that ER mannosidase I (ERManI) is required for the trimming and concentrates together with the ERAD substrate and ERAD machinery in the pericentriolar ER-derived quality control compartment (ERQC). Inhibition of mannose trimming prevents substrate accumulation in the ERQC. Here, we show that the mannosidase inhibitor kifunensine or ERManI knockdown do not affect binding of an ERAD substrate glycoprotein to EDEM1. In contrast, substrate association with XTP3-B and with the E3 ubiquitin ligases HRD1 and SCF(Fbs2) was inhibited. Consistently, whereas the ERAD substrate partially colocalized upon proteasomal inhibition with EDEM1, HRD1, and Fbs2 at the ERQC, colocalization was repressed by mannosidase inhibition in the case of the E3 ligases but not for EDEM1. Interestingly, association and colocalization of the substrate with Derlin-1 was independent of mannose trimming. The HRD1 adaptor protein SEL1L had been suggested to play a role in N-glycan-dependent substrate delivery to OS9 and XTP3-B. However, substrate association with XTP3-B was still dependent on mannose trimming upon SEL1L knockdown. Our results suggest that mannose trimming enables delivery of a substrate glycoprotein from EDEM1 to late ERAD steps through association with XTP3-B.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Lectinas/metabolismo , Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Glicoproteínas/química , Glicosilación , Células HEK293 , Humanos , Lectinas/química , Manosidasas/metabolismo , Proteínas de la Membrana/química , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/metabolismo , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo
12.
Biomolecules ; 11(3)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652720

RESUMEN

With the extension of life span in recent decades, there is an increasing burden of late-onset neurodegenerative diseases, for which effective treatments are lacking. Neurodegenerative diseases include the widespread Alzheimer's disease (AD) and Parkinson's disease (PD), the less frequent Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) and also rare early-onset diseases linked to mutations that cause protein aggregation or loss of function in genes that maintain protein homeostasis. The difficulties in applying gene therapy approaches to tackle these diseases is drawing increasing attention to strategies that aim to inhibit cellular toxicity and restore homeostasis by intervening in cellular pathways. These include the unfolded protein response (UPR), activated in response to endoplasmic reticulum (ER) stress, a cellular affliction that is shared by these diseases. Special focus is turned to the PKR-like ER kinase (PERK) pathway of the UPR as a target for intervention. However, the complexity of the pathway and its ability to promote cell survival or death, depending on ER stress resolution, has led to some confusion in conflicting studies. Both inhibition and activation of the PERK pathway have been reported to be beneficial in disease models, although there are also some reports where they are counterproductive. Although with the current knowledge a definitive answer cannot be given on whether it is better to activate or to inhibit the pathway, the most encouraging strategies appear to rely on boosting some steps without compromising downstream recovery.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología
13.
Trends Biochem Sci ; 30(6): 297-303, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15950873

RESUMEN

Of the many post-translational modifications of proteins, ubiquitination and N-glycosylation stand out because they are polymeric additions. In contrast to single-unit modifications, the fate of the modified protein is determined by the dynamic equilibrium of polymerization versus depolymerization, rather than by the initial addition itself. Notably, it is the trimming of sugar chains and elongation of polyubiquitin that target the protein to degradation. Recent research suggests that, for each process, special receptors recognize chains that reach an appropriate length and commit the conjugated substrate for proteasomal disposal. We propose that the 'magic numbers' are loss of at least three mannose residues from the initial chain, or extension to at least four ubiquitins. Although these processes are compartmentalized to either side of the endoplasmic reticulum (ER) membrane, some proteins are sequentially subjected to both because they transverse this membrane for ER-associated degradation.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Calnexina/metabolismo , Secuencia de Carbohidratos , Glicoproteínas/metabolismo , Glicosilación , Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular
14.
Cells ; 9(9)2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971745

RESUMEN

N-linked glycosylation and sugar chain processing, as well as disulfide bond formation, are among the most common post-translational protein modifications taking place in the endoplasmic reticulum (ER). They are essential modifications that are required for membrane and secretory proteins to achieve their correct folding and native structure. Several oxidoreductases responsible for disulfide bond formation, isomerization, and reduction have been shown to form stable, functional complexes with enzymes and chaperones that are involved in the initial addition of an N-glycan and in folding and quality control of the glycoproteins. Some of these oxidoreductases are selenoproteins. Recent studies also implicate glycan machinery-oxidoreductase complexes in the recognition and processing of misfolded glycoproteins and their reduction and targeting to ER-associated degradation. This review focuses on the intriguing cooperation between the glycoprotein-specific cell machineries and ER oxidoreductases, and highlights open questions regarding the functions of many members of this large family.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/genética , Chaperonas Moleculares/metabolismo , Oxidorreductasas/metabolismo , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional , Selenoproteínas/metabolismo , Calnexina/genética , Calnexina/metabolismo , Disulfuros/metabolismo , Retículo Endoplásmico/enzimología , Células Eucariotas/citología , Células Eucariotas/enzimología , Glicosilación , Humanos , Manosidasas/genética , Manosidasas/metabolismo , Chaperonas Moleculares/genética , Oxidación-Reducción , Oxidorreductasas/genética , Pliegue de Proteína , Selenoproteínas/genética
15.
Sci Rep ; 10(1): 6875, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327686

RESUMEN

One of the pathways of the unfolded protein response, initiated by PKR-like endoplasmic reticulum kinase (PERK), is key to neuronal homeostasis in neurodegenerative diseases. PERK pathway activation is usually accomplished by inhibiting eIF2α-P dephosphorylation, after its phosphorylation by PERK. Less tried is an approach involving direct PERK activation without compromising long-term recovery of eIF2α function by dephosphorylation. Here we show major improvement in cellular (STHdhQ111/111) and mouse (R6/2) Huntington's disease (HD) models using a potent small molecule PERK activator that we developed, MK-28. MK-28 showed PERK selectivity in vitro on a 391-kinase panel and rescued cells (but not PERK-/- cells) from ER stress-induced apoptosis. Cells were also rescued by the commercial PERK activator CCT020312 but MK-28 was significantly more potent. Computational docking suggested MK-28 interaction with the PERK activation loop. MK-28 exhibited remarkable pharmacokinetic properties and high BBB penetration in mice. Transient subcutaneous delivery of MK-28 significantly improved motor and executive functions and delayed death onset in R6/2 mice, showing no toxicity. Therefore, PERK activation can treat a most aggressive HD model, suggesting a possible approach for HD therapy and worth exploring for other neurodegenerative disorders.


Asunto(s)
Activadores de Enzimas/farmacología , Enfermedad de Huntington/enzimología , eIF-2 Quinasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activadores de Enzimas/química , Factor 2 Eucariótico de Iniciación/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Ratones , Modelos Biológicos , Neostriado/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia
16.
Front Mol Biosci ; 6: 20, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001537

RESUMEN

Increasing evidence in recent years indicates that protein misfolding and aggregation, leading to ER stress, are central factors of pathogenicity in neurodegenerative diseases. This is particularly true in Huntington's disease (HD), where in contrast with other disorders, the cause is monogenic. Mutant huntingtin interferes with many cellular processes, but the fact that modulation of ER stress and of the unfolded response pathways reduces the toxicity, places these mechanisms at the core and gives hope for potential therapeutic approaches. There is currently no effective treatment for HD and it has a fatal outcome a few years after the start of symptoms of cognitive and motor impairment. Here we will discuss recent findings that shed light on the mechanisms of protein misfolding and aggregation that give origin to ER stress in neurodegenerative diseases, focusing on Huntington's disease, on the cellular response and on how to use this knowledge for possible therapeutic strategies.

17.
Biochem J ; 404(3): 509-16, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17338678

RESUMEN

The UPR (unfolded protein response) activates transcription of genes involved in proteasomal degradation. However, we found that in its early stages the UPR leads to a transient inhibition of proteasomal disposal of cytosolic substrates (p53 and p27kip1) and of those targeted to ER (endoplasmic reticulum)-associated degradation (uncleaved precursor of asialoglycoprotein receptor H2a). Degradation resumed soon after the protein synthesis arrest that occurs in early UPR subsided. Consistent with this, protein synthesis inhibitors blocked ubiquitin/proteasomal degradation. Ubiquitination was inhibited during the translation block, suggesting short-lived E3 ubiquitin ligases as candidate depleted proteins. This was indeed the case for p53 whose E3 ligase, Mdm2 (murine double minute 2), when overexpressed, restored the degradation, whereas a mutant Mdm2 in its acidic domain restored the ubiquitination but did not completely restore the degradation. Inhibition of proteasomal degradation early in UPR may prevent depletion of essential short-lived factors during the translation arrest. Stabilization of p27 through this mechanism may explain the cell cycle arrest in G1 when translation is blocked by inhibitors or by the UPR.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Animales , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Cicloheximida/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Células 3T3 NIH , Pliegue de Proteína , Inhibidores de la Síntesis de la Proteína/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo
18.
Commun Biol ; 1: 172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30374462

RESUMEN

Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.

19.
Cell Stress Chaperones ; 12(4): 373-83, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18229456

RESUMEN

Inhibition of protein folding in the endoplasmic reticulum (ER) causes ER stress, which triggers the unfolded protein response (UPR). To decrease the biosynthetic burden on the ER, the UPR inhibits in its initial stages protein synthesis. At later stages it upregulates components of ER-associated degradation (ERAD) and of the ubiquitin/proteasome system, which targets ER as well as cytosolic proteins for disposal. Here we report that, at later stages, the UPR also activates an alternative nonproteasomal pathway of degradation, which is resistant to proteasome inhibitors and is specific for ER substrates (assessed with uncleaved precursor of asialoglycoprotein receptor H2a and unassembled CD3delta) and not for cytosolic ones (p53). To mimic the initial inhibition of translation during UPR, we incubated cells with cycloheximide. After this treatment, degradation of ERAD substrates was no longer effected by proteasomal inhibition, similarly to the observed outcome of UPR. The degradation also became insensitive to abrogation of ubiquitination in a cell line carrying a thermosensitive E1 ubiquitin activating enzyme mutant. Of all protease inhibitors tested, only the metal chelator o-phenanthroline could block this nonproteasomal degradation. Preincubation of o-phenanthroline with Mn2+ or Co2+, but not with other cations, reversed the inhibition. Our results suggest that, upon inhibition of translation, an alternative nonproteasomal pathway is activated for degradation of proteins from the ER. This involves a Mn2+/Co2+-dependent metalloprotease or other metalloprotein. The alternative pathway selectively targets ERAD substrates to reduce the ER burden, but does not affect p53, the levels of which remain dependent on proteasomal control.


Asunto(s)
Retículo Endoplásmico/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Animales , Células CHO , Cobalto , Cricetinae , Cricetulus , Cicloheximida/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Manganeso , Metaloproteínas/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Células 3T3 NIH , Fenantrolinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Biosíntesis de Proteínas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Temperatura , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación/efectos de los fármacos
20.
Mol Biol Cell ; 15(5): 2133-42, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14978212

RESUMEN

The thiol oxidoreductase endoplasmic reticulum (ER)p57 interacts with newly synthesized glycoproteins through ternary complexes with the chaperones/lectins calnexin or calreticulin. On proteasomal inhibition calnexin and calreticulin concentrate in the pericentriolar endoplasmic reticulum-derived quality control compartment that we recently described. Surprisingly, ERp57 remained in an endoplasmic reticulum pattern. Using asialoglycoprotein receptor H2a and H2b as models, we determined in pulse-chase experiments that both glycoproteins initially bind to calnexin and ERp57. However, H2b, which will exit to the Golgi, dissociated from calnexin and remained bound for a longer period to ERp57, whereas the opposite was true for the endoplasmic reticulum-associated degradation substrate H2a that will go to the endoplasmic reticulum-derived quality control compartment. At 15 degrees C, ERp57 colocalized with H2b adjacent to an endoplasmic reticulum-Golgi intermediate compartment marker. Posttranslational inhibition of glucose excision prolonged association of H2a precursor to calnexin but not to ERp57. Preincubation with a low concentration (15 microg/ml) of the glucosidase inhibitor castanospermine prevented the association of H2a to ERp57 but not to calnexin. This low concentration of castanospermine accelerated the degradation of H2a, suggesting that ERp57 protects the glycoprotein from degradation and not calnexin. Our results suggest an early chaperone-mediated sorting event with calnexin being involved in the quality control retention of molecules bound for endoplasmic reticulum-associated degradation and ERp57 giving initial protection from degradation and later assisting the maturation of molecules that will exit to the Golgi.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Calnexina/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/fisiología , Isomerasas/fisiología , Animales , Calnexina/metabolismo , Glucosa/análisis , Glucosa/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/metabolismo , Indolizinas/farmacología , Isomerasas/antagonistas & inhibidores , Isomerasas/metabolismo , Lectinas de Unión a Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Células 3T3 NIH , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Proteína Disulfuro Isomerasas , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA