Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chem Rev ; 122(14): 11974-12045, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35816578

RESUMEN

Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.


Asunto(s)
Metaloproteínas , Catálisis , Dominio Catalítico , Hemo/química , Metaloproteínas/metabolismo , Metales/química
2.
Biochemistry ; 62(2): 388-395, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36215733

RESUMEN

Heme-copper oxidases (HCOs) utilize tyrosine (Tyr) to donate one of the four electrons required for the reduction of O2 to water in biological respiration, while tryptophan (Trp) is speculated to fulfill the same role in cyt bd oxidases. We previously engineered myoglobin into a biosynthetic model of HCOs and demonstrated the critical role that Tyr serves in the oxygen reduction reaction (ORR). To address the roles of Tyr and Trp in these oxidases, we herein report the preparation of the same biosynthetic model with the Tyr replaced by Trp and further demonstrate that Trp can also promote the ORR, albeit with lower activity. An X-ray crystal structure of the Trp variant shows a hydrogen-bonding network involving two water molecules that are organized by Trp, similar to that in the Tyr variant, which is absent in the crystal structure with the native Phe residue. Additional electron paramagnetic resonance measurements are consistent with the formation of a Trp radical species upon reacting with H2O2. We attribute the lower activity of the Trp variant to Trp's higher reduction potential relative to Tyr. Together, these findings demonstrate, for the first time, that Trp can indeed promote the ORR and provides a structural basis for the observation of varying activities. The results support a redox role for the conserved Trp in bd oxidase while suggesting that HCOs use Tyr instead of Trp to achieve higher reactivity.


Asunto(s)
Hemo , Triptófano , Triptófano/química , Hemo/química , Agua , Peróxido de Hidrógeno/química , Oxidorreductasas/metabolismo , Oxidación-Reducción , Tirosina/química , Oxígeno/química
3.
J Am Chem Soc ; 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170000

RESUMEN

The protonation state of the iron(IV) oxo (or ferryl) form of ascorbate peroxidase compound II (APX-II) is a subject of debate. It has been reported that this intermediate is best described as an iron(IV) hydroxide species. Neutron diffraction data obtained from putative APX-II crystals indicate a protonated oxygenic ligand at 1.88 Å from the heme iron. This finding, if correct, would be unprecedented. A basic iron(IV) oxo species has yet to be spectroscopically observed in a histidine-ligated heme enzyme. The importance of ferryl basicity lies in its connection to our fundamental understanding of C-H bond activation. Basic ferryl species have been proposed to facilitate the oxidation of inert C-H bonds, reactions that are unknown for histidine-ligated hemes enzymes. To provide further insight into the protonation status of APX-II, we examined the intermediate using a combination of Mössbauer and X-ray absorption spectroscopies. Our data indicate that APX-II is an iron(IV) oxo species with an Fe-O bond distance of 1.68 Å, a K-edge pre-edge absorption of 18 units, and Mössbauer parameters of ΔEq = 1.65 mm/s and δ = 0.03 mm/s.

4.
J Biol Inorg Chem ; 22(2-3): 209-220, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28091754

RESUMEN

Protonated ferryl (or iron(IV)hydroxide) intermediates have been characterized in several thiolate-ligated heme proteins that are known to catalyze C-H bond activation. The basicity of the ferryl intermediates in these species has been proposed to play a critical role in facilitating this chemistry, allowing hydrogen abstraction at reduction potentials below those that would otherwise lead to oxidative degradation of the enzyme. In this contribution, we discuss the events that led to the assignment and characterization of the unusual iron(IV)hydroxide species, highlighting experiments that provided a quantitative measure of the ferryl basicity, the iron(IV)hydroxide pKa. We then turn to the importance of the iron(IV)hydroxide state, presenting a new way of looking at the role of thiolate ligation in these systems.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Compuestos de Sulfhidrilo/química , Sistema Enzimático del Citocromo P-450/química , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Compuestos de Sulfhidrilo/metabolismo
5.
J Inorg Biochem ; 224: 111548, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481347

RESUMEN

The protonation state of ascorbate peroxidase compound II (APX-II) has been a subject of debate. A combined X-ray/neutron crystallographic study reported that APX-II is best described as an iron(IV)hydroxide species with an FeO distance of 1.88 Å (Kwon, et al. Nat Commun2016, 7, 13,445), while X-ray absorption spectroscopy (XAS) experiments (utilizing extended X-ray absorption fine structure (EXAFS) and pre-edge analyses) indicate APX-II is an authentic iron(IV)oxo species with an FeO distance 1.68 Å (Ledray, et al. Journal of the American Chemical Society2020,142, 20,419). Previous debates concerning ferryl protonation states have been resolved through the application of Badger's rule, which correlates FeO bond distances with FeO vibrational frequencies. To obtain the required vibrational data, we have collected Nuclear Resonance Vibrational Spectroscopy (NRVS) data for APX-II. We observe a broad vibrational feature in the range associated with iron(IV)oxo stretching (700-800 cm-1). This feature appears to have two peaks at 732 cm-1 and 770 cm-1, corresponding to FeO distances of 1.69 and 1.67 Å, respectively. The broad vibrational envelope and the presence of multiple resonances could reflect a distribution of hydrogen bonding interactions within the active-site pocket.


Asunto(s)
Ascorbato Peroxidasas/química , Hidróxidos/química , Hierro/química , Cristalografía por Rayos X/métodos , Compuestos Férricos/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Oxígeno/química , Protones , Espectrometría Raman/métodos , Espectroscopía de Absorción de Rayos X/métodos
6.
J Mol Biol ; 430(24): 5151-5168, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30414964

RESUMEN

Liquid-liquid phase separation (LLPS) of proteins is important to a variety of biological processes both functional and deleterious, including the formation of membraneless organelles, molecular condensations that sequester or release molecules in response to stimuli, and the early stages of disease-related protein aggregation. In the protein-rich, crowded environment of the eye lens, LLPS manifests as cold cataract. We characterize the LLPS behavior of six structural γ-crystallins from the eye lens of the Antarctic toothfish Dissostichus mawsoni, whose intact lenses resist cold cataract in subzero waters. Phase separation of these proteins is not strongly correlated with thermal stability, aggregation propensity, or cross-species chaperone protection from heat denaturation. Instead, LLPS is driven by protein-protein interactions involving charged residues. The critical temperature of the phase transition can be tuned over a wide temperature range by selective substitution of surface residues, suggesting general principles for controlling this phenomenon, even in compactly folded proteins.


Asunto(s)
Perciformes/metabolismo , gamma-Cristalinas/química , gamma-Cristalinas/metabolismo , Animales , Regiones Antárticas , Catarata/metabolismo , Frío , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Cristalino/química , Cristalino/metabolismo , Modelos Moleculares , Mutación , Transición de Fase , Conformación Proteica , Pliegue de Proteína , Mapas de Interacción de Proteínas , gamma-Cristalinas/genética
7.
Sci Rep ; 8(1): 1739, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379136

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a peripheral neuromuscular disorder in which axonal degeneration causes progressive loss of motor and sensory nerve function. The loss of motor nerve function leads to distal muscle weakness and atrophy, resulting in gait problems and difficulties with walking, running, and balance. A mutation in the cytoplasmic dynein heavy chain (DHC) gene was discovered to cause an autosomal dominant form of the disease designated Charcot-Marie-Tooth type 2 O disease (CMT2O) in 2011. The mutation is a single amino acid change of histidine into arginine at amino acid 306 (H306R) in DHC. In order to understand the onset and progression of CMT2, we generated a knock-in mouse carrying the corresponding CMT2O mutation (H304R/+). We examined H304R/+ mouse cohorts in a 12-month longitudinal study of grip strength, tail suspension, and rotarod assays. H304R/+ mice displayed distal muscle weakness and loss of motor coordination phenotypes consistent with those of individuals with CMT2. Analysis of the gastrocnemius of H304R/+ male mice showed prominent defects in neuromuscular junction (NMJ) morphology including reduced size, branching, and complexity. Based on these results, the H304R/+ mouse will be an important model for uncovering functions of dynein in complex organisms, especially related to CMT onset and progression.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Dineínas Citoplasmáticas/genética , Modelos Animales de Enfermedad , Proteínas Mutantes/genética , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Arginina/genética , Técnicas de Sustitución del Gen , Histidina/genética , Humanos , Estudios Longitudinales , Masculino , Ratones , Mutación Missense
8.
Cell Chem Biol ; 25(4): 357-369.e6, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29396292

RESUMEN

Aberrant hedgehog (Hh) signaling contributes to the pathogenesis of multiple cancers. Available inhibitors target Smoothened (Smo), which can acquire mutations causing drug resistance. Thus, compounds that inhibit Hh signaling downstream of Smo are urgently needed. We identified dynarrestin, a novel inhibitor of cytoplasmic dyneins 1 and 2. Dynarrestin acts reversibly to inhibit cytoplasmic dynein 1-dependent microtubule binding and motility in vitro without affecting ATP hydrolysis. It rapidly and reversibly inhibits endosome movement in living cells and perturbs mitosis by inducing spindle misorientation and pseudoprometaphase delay. Dynarrestin reversibly inhibits cytoplasmic dynein 2-dependent intraflagellar transport (IFT) of the cargo IFT88 and flux of Smo within cilia without interfering with ciliogenesis and suppresses Hh-dependent proliferation of neuronal precursors and tumor cells. As such, dynarrestin is a valuable tool for probing cytoplasmic dynein-dependent cellular processes and a promising compound for medicinal chemistry programs aimed at development of anti-cancer drugs.


Asunto(s)
Dineínas Citoplasmáticas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cilios/efectos de los fármacos , Cilios/metabolismo , Dineínas Citoplasmáticas/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Mitosis/efectos de los fármacos , Células 3T3 NIH , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA