Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(11): 1252-1262, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27595231

RESUMEN

The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/-) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Virosis/inmunología , Virosis/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Animales , Antivirales/farmacología , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones , Ratones Noqueados , Péptidos/farmacología , Fosforilación , Unión Proteica , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/efectos de los fármacos , Virus ARN/inmunología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Ubiquitinación , Virosis/virología , Replicación Viral
2.
EMBO J ; 42(13): e111867, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37203866

RESUMEN

Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Ratones , Animales , Proteínas 14-3-3 , Factores de Transcripción/genética , Mediadores de Inflamación
3.
J Am Chem Soc ; 146(1): 773-781, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38148506

RESUMEN

We report the observation of superconductivity in (Pt0.2Ir0.8)3Zr5 with a chiral space group (P6122) at low temperatures. The bulk nature of the superconductivity at a transition temperature of 2.2 K was confirmed using specific heat measurements. We revealed that (Pt0.2Ir0.8)3Zr5 obeys the weak-coupling Bardeen-Cooper-Schrieffer model, and the dominant mechanism in the upper critical field is the orbital pair-breaking limit rather than the Pauli-Clogston limit. This indicates that the antisymmetric spin-orbit coupling caused by the chiral crystal structure does not significantly affect the superconductivity of (Pt0.2Ir0.8)3Zr5.

4.
EMBO J ; 39(21): e105139, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32935379

RESUMEN

NF-κB essential modulator (NEMO) is a key regulatory protein that functions during NF-κB- and interferon-mediated signaling in response to extracellular stimuli and pathogen infections. Tight regulation of NEMO is essential for host innate immune responses and for maintenance of homeostasis. Here, we report that the E3 ligase MARCH2 is a novel negative regulator of NEMO-mediated signaling upon bacterial or viral infection. MARCH2 interacted directly with NEMO during the late phase of infection and catalyzed K-48-linked ubiquitination of Lys326 on NEMO, which resulted in its degradation. Deletion of MARCH2 resulted in marked resistance to bacterial/viral infection, along with increased innate immune responses both in vitro and in vivo. In addition, MARCH2-/- mice were more susceptible to LPS challenge due to massive production of cytokines. Taken together, these findings provide new insight into the molecular regulation of NEMO and suggest an important role for MARCH2 in homeostatic control of innate immune responses.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Animales , Línea Celular , Femenino , Eliminación de Gen , Humanos , Inmunidad Innata/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , FN-kappa B/metabolismo , Transducción de Señal/genética , Transcriptoma , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
5.
Immunity ; 43(1): 80-91, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26200012

RESUMEN

The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming.


Asunto(s)
Cisteína Endopeptidasas/biosíntesis , Inflamación/inmunología , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Macrófagos/metabolismo , Receptores de Estrógenos/genética , Receptor Toll-Like 4/inmunología , Acetilación , Animales , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Células Cultivadas , Cisteína Endopeptidasas/genética , Activación Enzimática/genética , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Lipopolisacáridos , Macrófagos/inmunología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , NAD/metabolismo , Fosforilación Oxidativa , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/inmunología , Choque Séptico/inmunología , Transducción de Señal , Sirtuina 1/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Ubiquitinación , Receptor Relacionado con Estrógeno ERRalfa
6.
Inorg Chem ; 63(11): 4989-4996, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38440851

RESUMEN

The triple bond in N2 is significantly stronger than the double bond in O2, meaning that synthesizing nitrogen-rich nitrides typically requires activated nitrogen precursors, such as ammonia, plasma-cracked atomic nitrogen, or high-pressure N2. Here, we report a synthesis of nitrogen-rich nitrides under ambient pressure and atmosphere. Using Na2MoO4 and dicyandiamide precursors, we synthesized nitrogen-rich γ-Mo2N3 in an alumina crucible under an ambient atmosphere, heated in a box furnace between 500 and 600 °C. Byproducts of this metathesis reaction include volatile gases and solid Na(OCN), which can be washed away with water. X-ray diffraction and neutron diffraction showed Mo2N3 with a rock salt structure having cation vacancies, with no oxygen incorporation, in contrast to the more common nitrogen-poor rock salt Mo2N with anion vacancies. Moreover, an increase in temperature to 700 °C resulted in molybdenum oxynitride, Mo0.84N0.72O0.27. This work illustrates the potential for dicyandiamide as an ambient-temperature metathesis precursor for an increased effective nitrogen chemical potential under ambient conditions. The classical experimental setting often used for solid-state oxide synthesis, therefore, has the potential to expand the nitride chemistry.

7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853949

RESUMEN

Fibroblast growth factor 23 (FGF23), a hormone generally derived from bone, is important in phosphate and vitamin D homeostasis. In acute kidney injury (AKI) patients, high-circulating FGF23 levels are associated with disease progression and mortality. However, the organ and cell type of FGF23 production in AKI and the molecular mechanism of its excessive production are still unidentified. For insight, we investigated folic acid (FA)-induced AKI in mice. Interestingly, simultaneous with FGF23, orphan nuclear receptor ERR-γ expression is increased in the liver of FA-treated mice, and ectopic overexpression of ERR-γ was sufficient to induce hepatic FGF23 production. In patients and in mice, AKI is accompanied by up-regulated systemic IL-6, which was previously identified as an upstream regulator of ERR-γ expression in the liver. Administration of IL-6 neutralizing antibody to FA-treated mice or of recombinant IL-6 to healthy mice confirms IL-6 as an upstream regulator of hepatic ERR-γ-mediated FGF23 production. A significant (P < 0.001) interconnection between high IL-6 and FGF23 levels as a predictor of AKI in patients that underwent cardiac surgery was also found, suggesting the clinical relevance of the finding. Finally, liver-specific depletion of ERR-γ or treatment with an inverse ERR-γ agonist decreased hepatic FGF23 expression and plasma FGF23 levels in mice with FA-induced AKI. Thus, inverse agonist of ERR-γ may represent a therapeutic strategy to reduce adverse plasma FGF23 levels in AKI.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Receptores de Estrógenos/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos/genética , Ácido Fólico/efectos adversos , Ácido Fólico/farmacología , Interleucina-6/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos/metabolismo , Receptores de Estrógenos/genética , Activación Transcripcional
8.
J Orthop Sci ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38423870

RESUMEN

BACKGROUND: The purpose of this study was to compare fracture characteristics and functional outcomes between patients with proximal humerus fractures with and without initial varus displacement. METHODS: A retrospective review of 325 patients with proximal humerus fractures was performed. Patients with initial varus displacement were placed in Varus cohort and were age- and sex-matched 1:1 with a second cohort presenting proximal humerus fractures without varus displacement, referred to as Fracture cohort. Varus fracture displacement was defined when the most proximal aspect of humeral head was below the most proximal aspect of greater tuberosity on initial radiographs, and the head shaft angle was <130°. RESULTS: There were 60 patients in V cohort and 60 patients in F cohort. Statistical analysis revealed that there were significant differences in initial horizontal offset (38.8 vs. 45.9 mm), initial anterior angulation angle (36.5° vs. 16.4°), postoperative head shaft angle (132.2° vs. 141.3°), last head shaft angle (122.2° vs. 138.5°), difference for head shaft angles (10.0° vs. 2.7°), postoperative horizontal offset (43.4 vs. 45.3 mm), last horizontal offset (38.4 vs. 42.8 mm), difference for offsets (4.9 vs. 2.5 mm), complications (15 vs. 7 cases), and revision surgery (7 vs. 1 case) between two cohorts. Overall satisfactory results were achieved in most patients regardless of varus displacement, pain-VAS and Constant scores in V cohort were inferior to the scores in F cohort. The cut-off value of postoperative head shaft angle for good/excellent outcomes was 135.5° using receiver operating characteristic curve analyses. CONCLUSION: Varus displaced proximal humerus fractures were accompanied by decreased horizontal offset and increased anterior angulation angle, and had a course of more varization and horizontal shortening compared with those without initial varus displacement. Patients with varus displaced fractures were associated with worse functional outcomes, and these factors might affect functional outcomes. LEVEL OF EVIDENCE: Prognostic, cohort study, Level III.

9.
Diabetologia ; 66(5): 931-954, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36759348

RESUMEN

AIMS/HYPOTHESIS: Non-alcoholic fatty liver disease (NAFLD) associated with type 2 diabetes may more easily progress towards severe forms of non-alcoholic steatohepatitis (NASH) and cirrhosis. Although the Wnt effector transcription factor 7-like 2 (TCF7L2) is closely associated with type 2 diabetes risk, the role of TCF7L2 in NAFLD development remains unclear. Here, we investigated how changes in TCF7L2 expression in the liver affects hepatic lipid metabolism based on the major risk factors of NAFLD development. METHODS: Tcf7l2 was selectively ablated in the liver of C57BL/6N mice by inducing the albumin (Alb) promoter to recombine Tcf7l2 alleles floxed at exon 5 (liver-specific Tcf7l2-knockout [KO] mice: Alb-Cre;Tcf7l2f/f). Alb-Cre;Tcf7l2f/f and their wild-type (Tcf7l2f/f) littermates were fed a high-fat diet (HFD) or a high-carbohydrate diet (HCD) for 22 weeks to reproduce NAFLD/NASH. Mice were refed a standard chow diet or an HCD to stimulate de novo lipogenesis (DNL) or fed an HFD to provide exogenous fatty acids. We analysed glucose and insulin sensitivity, metabolic respiration, mRNA expression profiles, hepatic triglyceride (TG), hepatic DNL, selected hepatic metabolites, selected plasma metabolites and liver histology. RESULTS: Alb-Cre;Tcf7l2f/f essentially exhibited increased lipogenic genes, but there were no changes in hepatic lipid content in mice fed a normal chow diet. However, following 22 weeks of diet-induced NAFLD/NASH conditions, liver steatosis was exacerbated owing to preferential metabolism of carbohydrate over fat. Indeed, hepatic Tcf7l2 deficiency enhanced liver lipid content in a manner that was dependent on the duration and amount of exposure to carbohydrates, owing to cell-autonomous increases in hepatic DNL. Mechanistically, TCF7L2 regulated the transcriptional activity of Mlxipl (also known as ChREBP) by modulating O-GlcNAcylation and protein content of carbohydrate response element binding protein (ChREBP), and targeted Srebf1 (also called SREBP1) via miRNA (miR)-33-5p in hepatocytes. Eventually, restoring TCF7L2 expression at the physiological level in the liver of Alb-Cre;Tcf7l2f/f mice alleviated liver steatosis without altering body composition under both acute and chronic HCD conditions. CONCLUSIONS/INTERPRETATION: In mice, loss of hepatic Tcf7l2 contributes to liver steatosis by inducing preferential metabolism of carbohydrates via DNL activation. Therefore, TCF7L2 could be a promising regulator of the NAFLD associated with high-carbohydrate diets and diabetes since TCF7L2 deficiency may lead to development of NAFLD by promoting utilisation of excess glucose pools through activating DNL. DATA AVAILABILITY: RNA-sequencing data have been deposited into the NCBI GEO under the accession number GSE162449 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162449 ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipogénesis/genética , Ratones Endogámicos C57BL , Hígado/metabolismo , Hepatocitos/metabolismo , Dieta Alta en Grasa , Triglicéridos/metabolismo , Glucosa/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
10.
Small ; 19(17): e2205224, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36693802

RESUMEN

Transition metal dichalcogenides exhibit phase transitions through atomic migration when triggered by various stimuli, such as strain, doping, and annealing. However, since atomically thin 2D materials are easily damaged and evaporated from these strategies, studies on the crystal structure and composition of transformed 2D phases are limited. Here, the phase and composition change behavior of laser-irradiated molybdenum ditelluride (MoTe2 ) in various stacked geometry are investigated, and the stable laser-induced phase patterning in hexagonal boron nitride (hBN)-encapsulated MoTe2 is demonstrated. When air-exposed or single-side passivated 2H-MoTe2 are irradiated by a laser, MoTe2 is transformed into Te or Mo3 Te4 due to the highly accumulated heat and atomic evaporation. Conversely, hBN-encapsulated 2H-MoTe2 transformed into a 1T' phase without evaporation or structural degradation, enabling stable phase transitions in desired regions. The laser-induced phase transition shows layer number dependence; thinner MoTe2 has a higher phase transition temperature. From the stable phase patterning method, the low contact resistivity of 1.13 kΩ µm in 2H-MoTe2 field-effect transistors with 1T' contacts from the seamless heterophase junction geometry is achieved. This study paves an effective way to fabricate monolithic 2D electronic devices with laterally stitched phases and provides insights into phase and compositional changes in 2D materials.

11.
Small ; 19(40): e2304129, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37264689

RESUMEN

A barcode magnetic nanowire typically comprises a multilayer magnetic structure in a single body with more than one segment type. Interestingly, due to selective functionalization and novel interactions between the layers, it has attracted significant attention, particularly in bioengineering. However, analyzing the magnetic properties at the individual nanowire level remains challenging. Herein, the characterization of a single magnetic nanowire is investigated at room temperature under ambient conditions based on magnetic images obtained via wide-field quantum microscopy with nitrogen-vacancy centers in diamond. Consequently, critical magnetic properties of a single nanowire can be extracted, such as saturation magnetization and coercivity, by comparing the experimental result with that of micromagnetic simulation. This study opens up the possibility for a versatile in situ characterization method suited to individual magnetic nanowires.

12.
Nat Immunol ; 12(8): 742-51, 2011 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-21725320

RESUMEN

The orphan nuclear receptor SHP (small heterodimer partner) is a transcriptional corepressor that regulates hepatic metabolic pathways. Here we identified a role for SHP as an intrinsic negative regulator of Toll-like receptor (TLR)-triggered inflammatory responses. SHP-deficient mice were more susceptible to endotoxin-induced sepsis. SHP had dual regulatory functions in a canonical transcription factor NF-κB signaling pathway, acting as both a repressor of transactivation of the NF-κB subunit p65 and an inhibitor of polyubiquitination of the adaptor TRAF6. SHP-mediated inhibition of signaling via the TLR was mimicked by macrophage-stimulating protein (MSP), a strong inducer of SHP expression, via an AMP-activated protein kinase-dependent signaling pathway. Our data identify a previously unrecognized role for SHP in the regulation of TLR signaling.


Asunto(s)
FN-kappa B/inmunología , Receptores Citoplasmáticos y Nucleares/inmunología , Sepsis/inmunología , Receptores Toll-Like/inmunología , Proteínas Quinasas Activadas por AMP/inmunología , Animales , Inmunoprecipitación de Cromatina , Femenino , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/inmunología , Ubiquitinación/inmunología
13.
Nano Lett ; 22(6): 2578-2585, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35143727

RESUMEN

Using four-dimensional scanning transmission electron microscopy, we demonstrate a method to visualize grains and grain boundaries in WSe2 grown by metal organic chemical vapor deposition (MOCVD) directly onto silicon dioxide. Despite the chemical purity and uniform thickness and texture of the MOCVD-grown WSe2, we observe a high density of small grains that corresponds with the overall selenium deficiency we measure through ion beam analysis. Moreover, reconstruction of grain information permits the creation of orientation maps that demonstrate the nucleation mechanism for new layers-triangular domains with the same orientation as the layer underneath induces a tensile strain increasing the lattice parameter at these sites.

14.
Anal Chem ; 94(26): 9297-9305, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35696262

RESUMEN

The importance of multi-omic-based approaches to better understand diverse pathological mechanisms including neurodegenerative diseases has emerged. Spatial information can be of great help in understanding how biomolecules interact pathologically and in elucidating target biomarkers for developing therapeutics. While various analytical methods have been attempted for imaging-based biomolecule analysis, a multi-omic approach to imaging remains challenging due to the different characteristics of biomolecules. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful tool due to its sensitivity, chemical specificity, and high spatial resolution in visualizing chemical information in cells and tissues. In this paper, we suggest a new strategy to simultaneously obtain the spatial information of various kinds of biomolecules that includes both labeled and label-free approaches using ToF-SIMS. The enzyme-assisted labeling strategy for the targets of interest enables the sensitive and specific imaging of large molecules such as peptides, proteins, and mRNA, a task that has been, to date, difficult for any MS analysis. Together with the strength of the analytical performance of ToF-SIMS in the label-free tissue imaging of small biomolecules, the proposed strategy allows one to simultaneously obtain integrated information of spatial distribution of metabolites, lipids, peptides, proteins, and mRNA at a high resolution in a single measurement. As part of the suggested strategy, we present a sample preparation method suitable for MS imaging. Because a comprehensive method to examine the spatial distribution of multiple biomolecules in tissues has remained elusive, our strategy can be a useful tool to support the understanding of the interactions of biomolecules in tissues as well as pathological mechanisms.


Asunto(s)
Péptidos , Espectrometría de Masa de Ion Secundario , Animales , Encéfalo , Ratones , Ratones Transgénicos , ARN Mensajero , Espectrometría de Masa de Ion Secundario/métodos
15.
Proc Natl Acad Sci U S A ; 116(36): 17765-17774, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427531

RESUMEN

Perivascular adipose tissue (PVAT), as a mechanical support, has been reported to systemically regulate vascular physiology by secreting adipokines and cytokines. How PVAT spatially and locally changes as atherosclerosis progresses is not known, however. We aimed to reveal the molecular changes in PVAT in advanced atherosclerosis based on multimodal nonlinear optical (MNLO) imaging. First, using an atherogenic apolipoprotein E knockout mouse model, we precisely assessed the browning level of thoracic PVAT via a correlative analysis between the size and number of lipid droplets (LDs) of label-free MNLO images. We also biochemically demonstrated the increased level of brown fat markers in the PVAT of atherosclerosis. In the initial stage of atherosclerosis, the PVAT showed a highly activated brown fat feature due to the increased energy expenditure; however, in the advanced stage, only the PVAT in the regions of the atherosclerotic plaques, not that in the nonplaque regions, showed site-specific changes. We found that p-smad2/3 and TGF-ß signaling enhanced the increase in collagen to penetrate the PVAT and the agglomeration of LDs only at the sites of atherosclerotic plaques. Moreover, atherosclerotic thoracic PVAT (tPVAT) was an increased inflammatory response. Taken together, our findings show that PVAT changes differentially from the initial stages to advanced stages of atherosclerosis and undergoes spatial impairment focused on atherosclerotic plaques. Our study may provide insight into the local control of PVAT as a therapeutic target.


Asunto(s)
Tejido Adiposo Pardo , Aterosclerosis , Imagen Óptica , Placa Aterosclerótica , Transducción de Señal , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Animales , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/genética , Aterosclerosis/metabolismo , Masculino , Ratones , Ratones Noqueados para ApoE , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
16.
Nano Lett ; 21(3): 1546-1554, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33502866

RESUMEN

Single-photon emitters, the basic building blocks of quantum communication and information, have been developed using atomically thin transition metal dichalcogenides (TMDCs). Although the bandgap of TMDCs was spatially engineered in artificially created defects for single-photon emitters, it remains a challenge to precisely align the emitter's dipole moment to optical cavities for the Purcell enhancement. Here, we demonstrate position- and polarization-controlled single-photon emitters in monolayer WSe2. A tensile strain of ∼0.2% was applied to monolayer WSe2 by placing it onto a dielectric rod structure with a nanosized gap. Excitons were localized in the nanogap sites, resulting in the generation of linearly polarized single-photon emission with a g(2) of ∼0.1 at 4 K. Additionally, we measured the abrupt change in polarization of single photons with respect to the nanogap size. Our robust spatial and polarization control of emission provides an efficient way to demonstrate deterministic and scalable single-photon sources by integrating with nanocavities.

17.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36430486

RESUMEN

Fulminant hepatitis is characterized by rapid and massive immune-mediated liver injury. Dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1; NR0B1) represses the transcription of various genes. Here, we determine whether DAX1 serves as a regulator of inflammatory liver injury induced by concanavalin A (ConA). C57BL/6J (WT), myeloid cell-specific Dax1 knockout (MKO), and hepatocyte-specific Dax1 knockout (LKO) mice received single intravenous administration of ConA. Histopathological changes in liver and plasma alanine aminotransferase and aspartate aminotransferase levels in Dax1 MKO mice were comparable with those in WT mice following ConA administration. Unlike Dax1 MKO mice, Dax1 LKO mice were greatly susceptible to ConA-induced liver injury, which was accompanied by enhanced infiltration of immune cells, particularly CD4+ and CD8+ T cells, in the liver. Factors related to T-cell recruitment, including chemokines and adhesion molecules, significantly increased following enhanced and prolonged phosphorylation of NF-κB p65 in the liver of ConA-administered Dax1 LKO mice. This is the first study to demonstrate that hepatocyte-specific DAX1 deficiency exacerbates inflammatory liver injury via NF-κB p65 activation, thereby causing T-cell infiltration by modulating inflammatory chemokines and adhesion molecules. Our results suggest DAX1 as a therapeutic target for fulminant hepatitis treatment.


Asunto(s)
Linfocitos T CD8-positivos , Necrosis Hepática Masiva , Ratones , Animales , FN-kappa B , Ratones Endogámicos C57BL , Hepatocitos , Transducción de Señal , Concanavalina A/toxicidad , Linfocitos T CD4-Positivos
18.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233086

RESUMEN

Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. The dosage-sensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX-1, NR0B1), is an orphan nuclear receptor that acts as a transcriptional co-repressor of various genes. In this study, we identified the role of DAX-1 in APAP-induced liver injury using hepatocyte-specific Dax-1 knockout (Dax-1 LKO) mice. Mouse primary hepatocytes were used as a comparative in vitro study. APAP overdose led to decreased plasma alanine aminotransferase and aspartate aminotransferase levels in Dax-1 LKO mice compared to C57BL/6J (WT) controls, accompanied by reduced liver necrosis. The expression of the genes encoding the enzymes catalyzing glutathione (GSH) synthesis and metabolism and antioxidant enzymes was increased in the livers of APAP-treated Dax-1 LKO mice. The rapid recovery of GSH levels in the mitochondrial fraction of APAP-treated Dax-1 LKO mice led to reduced reactive oxygen species levels, resulting in the inhibition of the prolonged JNK activation. The hepatocyte-specific DAX-1 deficiency increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) compared with WT controls after APAP administration. These results indicate that DAX-1 deficiency in hepatocytes protects against APAP-induced liver injury by Nrf2-regulated antioxidant defense.


Asunto(s)
Antipiréticos , Enfermedad Hepática Inducida por Sustancias y Drogas , Receptor Nuclear Huérfano DAX-1 , Factor 2 Relacionado con NF-E2 , Acetaminofén/toxicidad , Alanina Transaminasa/metabolismo , Animales , Antioxidantes/metabolismo , Aspartato Aminotransferasas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Proteínas Co-Represoras/metabolismo , Receptor Nuclear Huérfano DAX-1/genética , Glutatión/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Arch Toxicol ; 95(9): 3071-3084, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34191077

RESUMEN

Acute liver injury results from the complex interactions of various pathological processes. The TGF-ß superfamily plays a crucial role in orchestrating fibrogenic response. In contrast to TGF-ß1, a role of TGF-ß2 in hepatic fibrogenic response has not been fully investigated. In this study, we showed that TGF-ß2 gene expression and secretion are induced in the liver of CCl4 (1 ml/kg)-treated WT mice. Studies with hepatocyte specific ERRγ knockout mice or treatment with an ERRγ-specific inverse agonist, GSK5182 (40 mg/kg), indicated that CCl4-induced hepatic TGF-ß2 production is ERRγ dependent. Moreover, IL6 was found as upstream signal to induce hepatic ERRγ and TGF-ß2 gene expression in CCl4-mediated acute toxicity model. Over-expression of ERRγ was sufficient to induce hepatic TGF-ß2 expression, whereas ERRγ depletion markedly reduces IL6-induced TGF-ß2 gene expression and secretion in vitro and in vivo. Promoter assays showed that ERRγ directly binds to an ERR response element in the TGF-ß2 promoter to induce TGF-ß2 transcription. Finally, GSK5182 diminished CCl4-induced fibrogenic response through inhibition of ERRγ-mediated TGF-ß2 production. Taken together, these results firstly demonstrate that ERRγ can regulate the TGF-ß2-mediated fibrogenic response in a mouse model of CC14-induced acute liver injury.


Asunto(s)
Hepatopatías/fisiopatología , Receptores de Estrógenos/genética , Tamoxifeno/análogos & derivados , Factor de Crecimiento Transformador beta2/genética , Animales , Tetracloruro de Carbono , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Hepatopatías/tratamiento farmacológico , Hepatopatías/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Estrógenos/efectos de los fármacos , Tamoxifeno/farmacología
20.
Nano Lett ; 20(3): 1934-1943, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32083883

RESUMEN

Among p-n junction devices with multilayered heterostructures with WSe2 and MoSe2, a device with the MoSe2-WSe2-MoSe2 (NPN) structure showed a remarkably high photoresponse, which was 1000 times higher than the MoSe2-WSe2 (NP) structure. The ideality factor of the NPN structure was estimated to be ∼1, lower than that of the NP structure. It is claimed that the NPN structure formed a thinner depletion region than that of the NP structure because of the difference of carrier concentrations of MoSe2 and WSe2. Hence, the built-in electric field was weaker, and the motion of the photocarriers was facilitated. These behaviors were confirmed experimentally from a photocurrent mapping analysis and Kelvin probe force microscopy. The work function depended on the wavelength of the illuminator, and quasi-Fermi level was estimated. The surface photovoltage on the MoSe2 region was higher than that on WSe2 because the lower bandgap of MoSe2 induces more electron-hole pair generation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA