Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(14): e2216700120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989302

RESUMEN

Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Inestabilidad Cromosómica , Cromosomas/metabolismo , Papillomavirus Humano 16/genética , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
PLoS Pathog ; 19(4): e1011215, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37036883

RESUMEN

Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7K81S, that was defective for binding PTPN14. Wild-type (WT) and E7K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7K81S mutant virus (E7K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7's ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.


Asunto(s)
Neoplasias , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Enfermedades de la Piel , Animales , Humanos , Ratones , Diferenciación Celular , Ratones Desnudos , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras/genética
3.
PLoS Pathog ; 18(10): e1010868, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36190982

RESUMEN

Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Telomerasa , Antibacterianos/metabolismo , Proliferación Celular , Herpesvirus Humano 4/metabolismo , Humanos , Queratinocitos , FN-kappa B/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Telomerasa/genética , Activación Viral
4.
PLoS Pathog ; 17(11): e1010045, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748616

RESUMEN

Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/patogenicidad , Queratinocitos/virología , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/virología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Latencia del Virus , Diferenciación Celular , Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/virología , Interacciones Huésped-Patógeno , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Activación Viral
5.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32641480

RESUMEN

We previously reported that the cellular transcription factor hypoxia-inducible factor 1α (HIF-1α) binds a hypoxia response element (HRE) located within the promoter of Epstein-Barr virus's (EBV's) latent-lytic switch BZLF1 gene, Zp, inducing viral reactivation. In this study, EBV-infected cell lines derived from gastric cancers and Burkitt lymphomas were incubated with HIF-1α-stabilizing drugs: the iron chelator deferoxamine (Desferal [DFO]), a neddylation inhibitor (pevonedistat [MLN-4924]), and a prolyl hydroxylase inhibitor (roxadustat [FG-4592]). DFO and MLN-4924, but not FG-4592, induced accumulation of both lytic EBV proteins and phosphorylated p53 in cell lines that contain a wild-type p53 gene. FG-4592 also failed to activate transcription from Zp in a reporter assay despite inducing accumulation of HIF-1α and transcription from another HRE-containing promoter. Unexpectedly, DFO failed to induce EBV reactivation in cell lines that express mutant or no p53 or when p53 expression was knocked down with short hairpin RNAs (shRNAs). Likewise, HIF-1α failed to activate transcription from Zp when p53 was knocked out by CRISPR-Cas9. Importantly, DFO induced binding of p53 as well as HIF-1α to Zp in chromatin immunoprecipitation (ChIP) assays, but only when the HRE was present. Nutlin-3, a drug known to induce accumulation of phosphorylated p53, synergized with DFO and MLN-4924 in inducing EBV reactivation. Conversely, KU-55933, a drug that inhibits ataxia telangiectasia mutated, thereby preventing p53 phosphorylation, inhibited DFO-induced EBV reactivation. Lastly, activation of Zp transcription by DFO and MLN-4924 mapped to its HRE. Thus, we conclude that induction of BZLF1 gene expression by HIF-1α requires phosphorylated, wild-type p53 as a coactivator, with HIF-1α binding recruiting p53 to Zp.IMPORTANCE EBV, a human herpesvirus, is latently present in most nasopharyngeal carcinomas, Burkitt lymphomas, and some gastric cancers. To develop a lytic-induction therapy for treating patients with EBV-associated cancers, we need a way to efficiently reactivate EBV into lytic replication. EBV's BZLF1 gene product, Zta, usually controls this reactivation switch. We previously showed that HIF-1α binds the BZLF1 gene promoter, inducing Zta synthesis, and HIF-1α-stabilizing drugs can induce EBV reactivation. In this study, we determined which EBV-positive cell lines are reactivated by classes of HIF-1α-stabilizing drugs. We found, unexpectedly, that HIF-1α-stabilizing drugs only induce reactivation when they also induce accumulation of phosphorylated, wild-type p53. Fortunately, p53 phosphorylation can also be provided by drugs such as nutlin-3, leading to synergistic reactivation of EBV. These findings indicate that some HIF-1α-stabilizing drugs may be helpful as part of a lytic-induction therapy for treating patients with EBV-positive malignancies that contain wild-type p53.


Asunto(s)
Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Transactivadores/genética , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Ciclopentanos/farmacología , Deferoxamina/farmacología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/virología , Regulación de la Expresión Génica , Glicina/análogos & derivados , Glicina/farmacología , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/agonistas , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Imidazoles/farmacología , Quelantes del Hierro/farmacología , Isoquinolinas/farmacología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Linfocitos/virología , Morfolinas/farmacología , Piperazinas/farmacología , Inhibidores de Prolil-Hidroxilasa/farmacología , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Pirimidinas/farmacología , Pironas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Elementos de Respuesta , Transducción de Señal , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Activación Viral/efectos de los fármacos
6.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29848590

RESUMEN

Human cytomegalovirus (HCMV) productive replication in vitro is most often studied in fibroblasts. In vivo, fibroblasts amplify viral titers, but transmission and pathogenesis require the infection of other cell types, most notably epithelial cells. In vitro, the study of HCMV infection of epithelial cells has been almost exclusively restricted to ocular epithelial cells. Here we present oral epithelial cells with relevance for viral interhost transmission as an in vitro model system to study HCMV infection. We discovered that HCMV productively replicates in normal oral keratinocytes (NOKs) and telomerase-immortalized gingival cells (hGETs). Our work introduces oral epithelial cells for the study of HCMV productive infection, drug screening, and vaccine development.IMPORTANCE The ocular epithelial cells currently used to study HCMV infections in vitro have historical significance based upon their role in retinitis, an HCMV disease most often seen in AIDS patients. However, with the successful implementation of highly active antiretroviral therapy (HAART) regimens, the incidence of HCMV retinitis has rapidly declined, and therefore, the relevance of studying ocular epithelial cell HCMV infection has decreased as well. Our introduction here of oral epithelial cells provides two alternative in vitro models for the study of HCMV infection that complement and extend the physiologic relevance of the ocular system currently in use.


Asunto(s)
Citomegalovirus/fisiología , Células Epiteliales/virología , Replicación Viral , Células Cultivadas , Humanos
7.
PLoS Pathog ; 13(6): e1006404, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28617871

RESUMEN

When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs). We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV). Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE) located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK) and gingival epithelial (hGET) cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV's natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for development of a lytic-induction therapy for treating some EBV-associated malignancies.


Asunto(s)
Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Linfoma/metabolismo , Transactivadores/genética , Animales , Linfocitos B/metabolismo , Linfocitos B/virología , Carcinogénesis , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Linfoma/genética , Linfoma/virología , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Transactivadores/metabolismo , Activación Viral
8.
J Virol ; 91(8)2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28179525

RESUMEN

Epstein-Barr virus (EBV)-associated diseases of epithelial cells, including tumors that have latent infection, such as nasopharyngeal carcinoma (NPC), and oral hairy leukoplakia (OHL) lesions that have lytic infection, frequently express the viral latent membrane protein 1 (LMP1). In lytically infected cells, LMP1 expression is activated by the BRLF1 (R) immediate early (IE) protein. However, the mechanisms by which LMP1 expression is normally regulated in epithelial cells remain poorly understood, and its potential roles in regulating lytic reactivation in epithelial cells are as yet unexplored. We previously showed that the differentiation-dependent cellular transcription factors KLF4 and BLIMP1 induce lytic EBV reactivation in epithelial cells by synergistically activating the two EBV immediate early promoters (Zp and Rp). Here we show that epithelial cell differentiation also induces LMP1 expression. We demonstrate that KLF4 and BLIMP1 cooperatively induce the expression of LMP1, even in the absence of the EBV IE proteins BZLF1 (Z) and R, via activation of the two LMP1 promoters. Furthermore, we found that differentiation of NOKs-Akata cells by either methylcellulose suspension or organotypic culture induces LMP1 expression prior to Z and R expression. We show that LMP1 enhances the lytic infection-inducing effects of epithelial cell differentiation, as well as 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate treatment, in EBV-infected epithelial cells by increasing expression of the Z and R proteins. Our results suggest that differentiation of epithelial cells activates a feed-forward loop in which KLF4 and BLIMP1 first activate LMP1 expression and then cooperate with LMP1 to activate Z and R expression.IMPORTANCE The EBV protein LMP1 is expressed in EBV-associated epithelial cell diseases, regardless of whether these diseases are due to lytic infection (such as oral hairy leukoplakia) or latent infection (such as nasopharyngeal carcinoma). However, surprisingly little is known about how LMP1 expression is regulated in epithelial cells, and there are conflicting reports about whether it plays any role in regulating viral lytic reactivation. In this study, we show that epithelial cell differentiation induces LMP1 expression by increasing expression of two cellular transcription factors (KLF4 and BLIMP1) which cooperatively activate the two LMP1 promoters. We also demonstrate that LMP1 promotes efficient lytic reactivation in EBV-infected epithelial cells by enhancing expression of the Z and R proteins. Thus, in EBV-infected epithelial cells, LMP1 expression is promoted by differentiation and positively regulates lytic viral reactivation.


Asunto(s)
Diferenciación Celular , Células Epiteliales/fisiología , Células Epiteliales/virología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Matriz Viral/metabolismo , Activación Viral , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/metabolismo
9.
PLoS Pathog ; 11(10): e1005195, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26431332

RESUMEN

Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL) in immunosuppressed patients. However, the cellular mechanism(s) that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1) promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs) cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.


Asunto(s)
Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Represoras/metabolismo , Activación Viral/fisiología , Adulto , Diferenciación Celular/fisiología , Línea Celular , Inmunoprecipitación de Cromatina , Células Epiteliales/patología , Técnica del Anticuerpo Fluorescente , Interacciones Huésped-Patógeno/fisiología , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Factor 4 Similar a Kruppel , Captura por Microdisección con Láser , Leucoplasia Vellosa/metabolismo , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Latencia del Virus/fisiología
10.
J Virol ; 89(1): 688-702, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355878

RESUMEN

UNLABELLED: Human papillomaviruses (HPVs) are small DNA viruses causally associated with benign warts and multiple cancers, including cervical and head-and-neck cancers. While the vast majority of people are exposed to HPV, most instances of infection are cleared naturally. However, the intrinsic host defense mechanisms that block the early establishment of HPV infections remain mysterious. Several antiviral cytidine deaminases of the human APOBEC3 (hA3) family have been identified as potent viral DNA mutators. While editing of HPV genomes in benign and premalignant cervical lesions has been demonstrated, it remains unclear whether hA3 proteins can directly inhibit HPV infection. Interestingly, recent studies revealed that HPV-positive cervical and head-and-neck cancers exhibited higher rates of hA3 mutation signatures than most HPV-negative cancers. Here, we report that hA3A and hA3B expression levels are highly upregulated in HPV-positive keratinocytes and cervical tissues in early stages of cancer progression, potentially through a mechanism involving the HPV E7 oncoprotein. HPV16 virions assembled in the presence of hA3A, but not in the presence of hA3B or hA3C, have significantly decreased infectivity compared to HPV virions assembled without hA3A or with a catalytically inactive mutant, hA3A/E72Q. Importantly, hA3A knockdown in human keratinocytes results in a significant increase in HPV infectivity. Collectively, our findings suggest that hA3A acts as a restriction factor against HPV infection, but the induction of this restriction mechanism by HPV may come at a cost to the host by promoting cancer mutagenesis. IMPORTANCE: Human papillomaviruses (HPVs) are highly prevalent and potent human pathogens that cause >5% of all human cancers, including cervical and head-and-neck cancers. While the majority of people become infected with HPV, only 10 to 20% of infections are established as persistent infections. This suggests the existence of intrinsic host defense mechanisms that inhibit viral persistence. Using a robust method to produce infectious HPV virions, we demonstrate that hA3A, but not hA3B or hA3C, can significantly inhibit HPV infectivity. Moreover, hA3A and hA3B were coordinately induced in HPV-positive clinical specimens during cancer progression, likely through an HPV E7 oncoprotein-dependent mechanism. Interestingly, HPV-positive cervical and head-and-neck cancer specimens were recently shown to harbor significant amounts of hA3 mutation signatures. Our findings raise the intriguing possibility that the induction of this host restriction mechanism by HPV may also trigger hA3A- and hA3B-induced cancer mutagenesis.


Asunto(s)
Citidina Desaminasa/metabolismo , Papillomaviridae/inmunología , Proteínas/metabolismo , Animales , Cuello del Útero/patología , Cuello del Útero/virología , Femenino , Perfilación de la Expresión Génica , Humanos , Queratinocitos/inmunología , Queratinocitos/virología , Ratones Endogámicos C57BL
11.
bioRxiv ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39282462

RESUMEN

Development of invasive cancer in mammals is thought to require months or years after initial events such as mutation or viral infection. Rarely, invasive cancers regress spontaneously. We show that cancers can develop and regress on a timescale of weeks, not months or years. Invasive squamous cell carcinomas developed in normal adult, immune-competent mice as soon as 2 weeks after infection with mouse papillomavirus MmuPV1. Tumor development, regression or persistence was tissue- and strain-dependent. Cancers in infected mice developed rapidly at sites also prone to papillomavirus-induced tumors and cancers in humans - the throat, anus, and skin - and their frequency was increased in mice constitutively expressing the papillomavirus E5 oncogene, which MmuPV1 lacks. Cancers and dysplasia in the throat and anus regressed completely within 4-8 weeks of infection; however, skin lesions in the ear persisted. T-cell depletion in the mouse showed that regression of throat and anal tumors requires T cells. We conclude that papillomavirus infection suffices for rapid onset of invasive cancer, and persistence of lesions depends on factors including tissue type and host immunity. The speed of these events should promote rapid progress in the study of viral cancer development, persistence, and regression.

12.
Front Oncol ; 14: 1440836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301555

RESUMEN

Human papillomaviruses (HPV), most commonly HPV16, are associated with a subset of head and neck squamous cell carcinoma (HNSCC) tumors, primarily oropharyngeal carcinomas, with integration of viral genomes into host chromosomes associated with worse survival outcomes. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. The role of BET protein-mediated transcription of viral-cellular genes in the viral-HNSCC genomes needs to be better understood. Using a combination of TAME-Seq, qRT-PCR, and immunoblot analyses, we show that BET inhibition downregulates E6 and E7 significantly, with heterogeneity in the downregulation of viral transcription across different HPV+ HNSCC cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4, mirroring the downregulation of viral E6 and E7 expression. We found that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A (p21) expression, leading to a G1-cell cycle arrest with apoptotic activity. Overall, our studies demonstrate that BET inhibition regulates both E6 and E7 viral and key cellular cell cycle regulator E2F gene expression and cellular gene expression in HPV-associated HNSCC and highlight the potential of BET inhibitors as a therapeutic strategy for this disease while also underscoring the importance of considering the heterogeneity in cellular responses to BET inhibition.

13.
J Proteome Res ; 12(5): 2034-44, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23540550

RESUMEN

Blood is an ideal window for viewing our health and disease status. Because blood circulates throughout the entire body and carries secreted, shed, and excreted signature proteins from every organ and tissue type, it is thus possible to use the blood proteome to achieve a comprehensive assessment of multiple-organ physiology and pathology. To date, the blood proteome has been frequently examined for diseases of individual organs; studies on compound insults impacting multiple organs are, however, elusive. We believe that a characterization of peripheral blood for organ-specific proteins affords a powerful strategy to allow early detection, staging, and monitoring of diseases and their treatments at a whole-body level. In this paper we test this hypothesis by examining a mouse model of acetaminophen (APAP)-induced hepatic and extra-hepatic toxicity. We used a glycocapture-assisted global quantitative proteomics (gagQP) approach to study serum proteins and validated our results using Western blot. We discovered in mouse sera both hepatic and extra-hepatic organ-specific proteins. From our validation, it was determined that selected organ-specific proteins had changed their blood concentration during the course of toxicity development and recovery. Interestingly, the peak responding time of proteins specific to different organs varied in a time-course study. The collected molecular information shed light on a complex, dynamic, yet interweaving, multiorgan-enrolled APAP toxicity. The developed technique as well as the identified protein markers is translational to human studies. We hope our work can broaden the utility of blood proteomics in diagnosis and research of the whole-body response to pathogenic cues.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Proteínas Sanguíneas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Proteoma/metabolismo , Alanina Transaminasa/metabolismo , Animales , Proteínas Sanguíneas/química , Proteínas Sanguíneas/aislamiento & purificación , Glicopéptidos/química , Glicopéptidos/aislamiento & purificación , Glicosilación , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Especificidad de Órganos , Mapas de Interacción de Proteínas , Proteoma/química , Proteoma/aislamiento & purificación
14.
bioRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37873389

RESUMEN

Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. However, the mechanism of BET protein-mediated transcription of viral-cellular genes in the integrated viral-HNSCC genomes needs to be better understood. We show that BET inhibition downregulates E6 significantly independent of the viral transcription factor, E2, and there was overall heterogeneity in the downregulation of viral transcription in response to the effects of BET inhibition across HPV-associated cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4 and mirrored downregulation of viral E6 and E7 expression. Strikingly, there was heterogeneity in the reactivation of p53 levels despite E6 downregulation, while E7 downregulation did not alter Rb levels significantly. We identified that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A expression. Overall, our studies show that BET inhibition provokes a G1-cell cycle arrest with apoptotic activity and suggests that BET inhibition regulates both viral and cellular gene expression in HPV-associated HNSCC.

15.
Nat Commun ; 14(1): 1975, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031202

RESUMEN

Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.


Asunto(s)
Carcinoma de Células Escamosas , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Femenino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Transcriptoma , Epitelio/metabolismo , Queratinocitos/metabolismo , Carcinogénesis/genética , Carcinoma de Células Escamosas/genética , Proteínas Oncogénicas Virales/genética
16.
Antimicrob Agents Chemother ; 56(9): 4900-5, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22777041

RESUMEN

ST-246 is being evaluated as a treatment for pathogenic orthopoxvirus infections in humans. To this end, a phase 2, double-blind, randomized, placebo-controlled, multicenter trial was conducted to assess the safety, tolerability, and pharmacokinetics (PK) of ST-246 when administered as a single daily oral dose (400 mg or 600 mg) for 14 days in fed adult volunteers. ST-246 was safe and well tolerated, with no deaths or serious adverse events reported during the study. There was a low incidence of treatment-emergent adverse events (TEAEs), the most common of which were mild nausea and headache. There were no clinically significant results from laboratory assessments, vital sign measurements, physical examinations, or electrocardiograms. The PK and dose proportionality of ST-246 were determined. The PK analysis showed that steady state was achieved by day 5 for the ST-246 400-mg treatment group and by day 6 for the 600-mg group. The dose proportionality analysis showed that the 400- and 600-mg ratio of dose-normalized peak drug concentration in plasma (C(max)) and relative exposure for each dosing interval (AUC(τ)) ranged from 80% to 85%. However, the 90% confidence intervals did not include 1.0, so dose proportionality could not be concluded. Overall, ST-246 was shown to be safe, and the PK was predictable. These results support further testing of ST-246 in a multicenter pivotal clinical safety study for licensure application.


Asunto(s)
Antivirales/farmacocinética , Benzamidas/farmacocinética , Isoindoles/farmacocinética , Administración Oral , Adolescente , Adulto , Anciano , Antivirales/administración & dosificación , Antivirales/efectos adversos , Antivirales/sangre , Área Bajo la Curva , Benzamidas/administración & dosificación , Benzamidas/efectos adversos , Benzamidas/sangre , Disponibilidad Biológica , Método Doble Ciego , Esquema de Medicación , Femenino , Semivida , Humanos , Isoindoles/administración & dosificación , Isoindoles/efectos adversos , Isoindoles/sangre , Masculino , Persona de Mediana Edad , Placebos
17.
Clin Cancer Res ; 28(13): 2953-2968, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35621713

RESUMEN

PURPOSE: We investigated whether in human head and neck squamous cell carcinoma (HNSCC) high levels of expression of stress keratin 17 (K17) are associated with poor survival and resistance to immunotherapy. EXPERIMENTAL DESIGN: We investigated the role of K17 in regulating both the tumor microenvironment and immune responsiveness of HNSCC using a syngeneic mouse HNSCC model, MOC2. MOC2 gives rise to immunologically cold tumors that are resistant to immune-checkpoint blockade (ICB). We engineered multiple, independent K17 knockout (KO) MOC2 cell lines and monitored their growth and response to ICB. We also measured K17 expression in human HNSCC of patients undergoing ICB. RESULTS: MOC2 tumors were found to express K17 at high levels. When knocked out for K17 (K17KO MOC2), these cells formed tumors that grew slowly or spontaneously regressed and had a high CD8+ T-cell infiltrate in immunocompetent syngeneic C57BL/6 mice compared with parental MOC2 tumors. This phenotype was reversed when we depleted mice for T cells. Whereas parental MOC2 tumors were resistant to ICB treatment, K17KO MOC2 tumors that did not spontaneously regress were eliminated upon ICB treatment. In a cohort of patients with HNSCC receiving pembrolizumab, high K17 expression correlated with poor response. Single-cell RNA-sequencing analysis revealed broad differences in the immune landscape of K17KO MOC2 tumors compared with parental MOC2 tumors, including differences in multiple lymphoid and myeloid cell types. CONCLUSIONS: We demonstrate that K17 expression in HNSCC contributes to immune evasion and resistance to ICB treatment by broadly altering immune landscapes of tumors.


Asunto(s)
Neoplasias de Cabeza y Cuello , Queratina-17 , Queratinas/metabolismo , Animales , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Evasión Inmune , Ratones , Ratones Endogámicos C57BL , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral/genética
18.
Cancers (Basel) ; 13(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668328

RESUMEN

High-risk human papillomavirus strain 16 (HPV16) causes oral and anogenital cancers through the activities of two viral oncoproteins, E6 and E7, that dysregulate the host p53 and pRb tumor suppressor pathways, respectively. The maintenance of HPV16-positive cancers requires constitutive expression of E6 and E7. Therefore, inactivating these proteins could provide the basis for an anticancer therapy. Herein we demonstrate that a subset of aspartyl protease inhibitor drugs currently used to treat HIV/AIDS cause marked reductions in HPV16 E6 and E7 protein levels using two independent cell culture models: HPV16-transformed CaSki cervical cancer cells and NIKS16 organotypic raft cultures (a 3-D HPV16-positive model of epithelial pre-cancer). Treatment of CaSki cells with some (lopinavir, ritonavir, nelfinavir, and saquinavir) but not other (indinavir and atazanavir) protease inhibitors reduced E6 and E7 protein levels, correlating with increased p53 protein levels and decreased cell viability. Long-term (>7 day) treatment of HPV16-positive NIKS16 raft cultures with saquinavir caused epithelial atrophy with no discernible effects on HPV-negative rafts, demonstrating selectivity. Saquinavir also reduced HPV16's effects on markers of the cellular autophagy pathway in NIKS16 rafts, a hallmark of HPV-driven pre-cancers. Taken together, these data suggest HIV-1 protease inhibitors be studied further in the context of treating or preventing HPV16-positive cancers.

19.
Cancers (Basel) ; 13(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068608

RESUMEN

Approximately 25% of head and neck squamous cell carcinomas (HNSCC) are associated with human papillomavirus (HPV) infection. In these cancers as well as in HPV-associated anogenital cancers, PI3K signaling is highly activated. We previously showed that IQ motif-containing GTPase activating protein 1 (IQGAP1), a PI3K pathway scaffolding protein, is overexpressed in and contributes to HNSCC and that blocking IQGAP1-mediated PI3K signaling reduces HPV-positive HNSCC cell survival and migration. In this study, we tested whether IQGAP1 promotes papillomavirus (PV)-associated HNSCCs. IQGAP1 was necessary for optimal PI3K signaling induced by HPV16 oncoproteins in transgenic mice and MmuPV1 infection, a mouse papillomavirus that causes HNSCC in mice. Furthermore, we found that, at 6 months post-infection, MmuPV1-infected Iqgap1-/- mice developed significantly less severe tumor phenotypes than MmuPV1-infected Iqgap1+/+ mice, indicating a role of IQGAP1 in MmuPV1-associated HNSCC. The tumors resulting from MmuPV1 infection showed features consistent with HPV infection and HPV-associated cancer. However, such IQGAP1-dependent effects on disease severity were not observed in an HPV16 transgenic mouse model for HNC. This may reflect that IQGAP1 plays a role in earlier stages of viral pathogenesis, or other activities of HPV16 oncogenes are more dominant in driving carcinogenesis than their influence on PI3K signaling.

20.
mBio ; 12(4): e0227721, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465025

RESUMEN

The species specificity of papillomaviruses has been a significant roadblock for performing in vivo pathogenesis studies in common model organisms. The Mus musculus papillomavirus type 1 (MmuPV1) causes cutaneous papillomas that can progress to squamous cell carcinomas in laboratory mice. The papillomavirus E6 and E7 genes encode proteins that establish and maintain a cellular milieu that allows for viral genome synthesis and viral progeny synthesis in growth-arrested, terminally differentiated keratinocytes. The E6 and E7 proteins provide this activity by binding to and functionally reprogramming key cellular regulatory proteins. The MmuPV1 E7 protein lacks the canonical LXCXE motif that mediates the binding of multiple viral oncoproteins to the cellular retinoblastoma tumor suppressor protein, RB1. Our proteomic experiments, however, revealed that MmuPV1 E7 still interacts with RB1. We show that MmuPV1 E7 interacts through its C terminus with the C-terminal domain of RB1. Binding of MmuPV1 E7 to RB1 did not cause significant activation of E2F-regulated cellular genes. MmuPV1 E7 expression was shown to be essential for papilloma formation. Experimental infection of mice with MmuPV1 expressing an E7 mutant that is defective for binding to RB1 caused delayed onset, lower incidence, and smaller sizes of papillomas. Our results demonstrate that the MmuPV1 E7 gene is essential and that targeting noncanonical activities of RB1, which are independent of RB1's ability to modulate the expression of E2F-regulated genes, contribute to papillomavirus-mediated pathogenesis. IMPORTANCE Papillomavirus infections cause a variety of epithelial hyperplastic lesions, or warts. While most warts are benign, some papillomaviruses cause lesions that can progress to squamous cell carcinomas, and approximately 5% of all human cancers are caused by human papillomavirus (HPV) infections. The papillomavirus E6 and E7 proteins are thought to function to reprogram host epithelial cells to enable viral genome replication in terminally differentiated, normally growth-arrested cells. E6 and E7 lack enzymatic activities and function by interacting and functionally altering host cell regulatory proteins. Many cellular proteins that can interact with E6 and E7 have been identified, but the biological relevance of these interactions for viral pathogenesis has not been determined. This is because papillomaviruses are species specific and do not infect heterologous hosts. Here, we use a recently established mouse papillomavirus (MmuPV1) model to investigate the role of the E7 protein in viral pathogenesis. We show that MmuPV1 E7 is necessary for papilloma formation. The retinoblastoma tumor suppressor protein (RB1) is targeted by many papillomaviral E7 proteins, including cancer-associated HPVs. We show that MmuPV1 E7 can bind RB1 and that infection with a mutant MmuPV1 virus that expresses an RB1 binding-defective E7 mutant caused smaller and fewer papillomas that arise with delayed kinetics.


Asunto(s)
Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/genética , Papillomaviridae/patogenicidad , Proteínas E7 de Papillomavirus/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Humanos , Queratinocitos/virología , Ratones , Ratones Desnudos , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus/genética , Infecciones por Papillomavirus/virología , Unión Proteica , Proteínas de Unión a Retinoblastoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA