RESUMEN
Stroma is a poorly defined non-parenchymal component of virtually every organ with key roles in organ development, homeostasis, and repair. Studies of the bone marrow stroma have defined individual populations in the stem cell niche regulating hematopoietic regeneration and capable of initiating leukemia. Here, we use single-cell RNA sequencing (scRNA-seq) to define a cellular taxonomy of the mouse bone marrow stroma and its perturbation by malignancy. We identified seventeen stromal subsets expressing distinct hematopoietic regulatory genes spanning new fibroblastic and osteoblastic subpopulations including distinct osteoblast differentiation trajectories. Emerging acute myeloid leukemia impaired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary for normal hematopoiesis. These data suggest that tissue stroma responds to malignant cells by disadvantaging normal parenchymal cells. Our taxonomy of the stromal compartment provides a comprehensive bone marrow cell census and experimental support for cancer cell crosstalk with specific stromal elements to impair normal tissue function and thereby enable emergent cancer.
Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Homeostasis , Leucemia Mieloide Aguda/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Microambiente Tumoral , Animales , Células de la Médula Ósea/patología , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Osteoblastos/patología , Células del Estroma/metabolismo , Células del Estroma/patologíaRESUMEN
While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.
Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Diferenciación Celular , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Células Mieloides/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pirimidinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The balance between oxidative and nonoxidative glucose metabolism is essential for a number of pathophysiological processes. By deleting enzymes that affect aerobic glycolysis with different potencies, we examine how modulating glucose metabolism specifically affects hematopoietic and leukemic cell populations. We find that a deficiency in the M2 pyruvate kinase isoform (PKM2) reduces the levels of metabolic intermediates important for biosynthesis and impairs progenitor function without perturbing hematopoietic stem cells (HSCs), whereas lactate dehydrogenase A (LDHA) deletion significantly inhibits the function of both HSCs and progenitors during hematopoiesis. In contrast, leukemia initiation by transforming alleles putatively affecting either HSCs or progenitors is inhibited in the absence of either PKM2 or LDHA, indicating that the cell-state-specific responses to metabolic manipulation in hematopoiesis do not apply to the setting of leukemia. This finding suggests that fine-tuning the level of glycolysis may be explored therapeutically for treating leukemia while preserving HSC function.
Asunto(s)
Glucólisis , Hematopoyesis , Leucemia/metabolismo , Animales , Eliminación de Gen , Células Madre Hematopoyéticas/metabolismo , Humanos , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasa 5 , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismoRESUMEN
BACKGROUND: Recycling of integrin via endosomal vesicles is critical for the migration of cancer cells, which leads to the metastasis of pancreatic cancer and devastating cancer-related death. So, new diagnostic and therapeutic molecules which target the recycling of endosomal vesicles need to be developed. METHODS: Public databases including TCGA, ICGC, GSE21501, GSE28735, and GENT are analyzed to derive diagnostic and therapeutic targets. To reveal biological roles and underlying mechanisms of molecular targets, various molecular biological experiments were conducted. RESULTS: First, we identified UNC13D's overexpression in patients with pancreatic cancer (n = 824) and its prognostic significance and high hazard ratio (HR) in four independent pancreatic cancer cohorts (TCGA, n = 178, p = 0.014, HR = 3.629; ICGC, n = 91, p = 0.000, HR = 4.362; GSE21501, n = 102, p = 0.002, HR = 2.339; GSE28735, n = 45, p = 0.022, HR = 2.681). Additionally, its expression is associated with the clinicopathological progression of pancreatic cancer. Further biological studies have shown that UNC13D regulates the migration of pancreatic cancer cells by coupling the exocytosis of recycling endosomes with focal adhesion turnover via the regulation of FAK phosphorylation. Immunoprecipitation and immunocytochemistry showed the formation of the RAB11-UNC13D-FAK axis in endosomes during integrin recycling. We observed that UNC13D directly interacted with the FERM domain of FAK and regulated FAK phosphorylation in a calcium-dependent manner. Finally, we found co-expression of UNC13D and FAK showed the poorest survival (TCGA, p = 0.000; ICGC, p = 0.036; GSE28735, p = 0.006). CONCLUSIONS: We highlight that UNC13D, a novel prognostic factor, promotes pancreatic cancer progression by coupling integrin recycling with focal adhesion turnover via the RAB11-UNC13D-FAK axis for the migration of pancreatic cancer cells.
Asunto(s)
Movimiento Celular , Adhesiones Focales , Integrinas , Neoplasias Pancreáticas , Proteínas de Unión al GTP rab , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Proteínas de Unión al GTP rab/metabolismo , Línea Celular Tumoral , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Femenino , Masculino , Transducción de Señal , Persona de Mediana Edad , Pronóstico , Regulación Neoplásica de la Expresión Génica , Endosomas/metabolismo , Progresión de la EnfermedadRESUMEN
Human papillomavirus (HPV) is a major causative factor of head and neck squamous cell carcinoma (HNSCC), and the incidence of HPV- associated HNSCC is increasing. The role of tumor microenvironment in viral infection and metastasis needs to be explored further. We studied the molecular characteristics of primary tumors (PTs) and lymph node metastatic tumors (LNMTs) by stratifying them based on their HPV status. Eight samples for single-cell RNA profiling and six samples for spatial transcriptomics (ST), composed of matched primary tumors (PT) and lymph node metastases (LNMT), were collected from both HPV- negative (HPV- ) and HPV-positive (HPV+ ) patients. Using the 10x Genomics Visium platform, integrative analyses with single-cell RNA sequencing were performed. Intracellular and intercellular alterations were analyzed, and the findings were confirmed using experimental validation and publicly available data set. The HPV+ tissues were composed of a substantial amount of lymphoid cells regardless of the presence or absence of metastasis, whereas the HPV- tissue exhibited remarkable changes in the number of macrophages and plasma cells, particularly in the LNMT. From both single-cell RNA and ST data set, we discovered a central gene, pyruvate kinase muscle isoform 1/2 (PKM2), which is closely associated with the stemness of cancer stem cell-like populations in LNMT of HPV- tissue. The consistent expression was observed in HPV- HNSCC cell line and the knockdown of PKM2 weakened spheroid formation ability. Furthermore, we found an ectopic lymphoid structure morphology and clinical effects of the structure in ST slide of the HPV+ patients and verified their presence in tumor tissue using immunohistochemistry. Finally, the ephrin-A (EPHA2) pathway was detected as important signals in angiogenesis for HPV- patients from single-cell RNA and ST profiles, and knockdown of EPHA2 declined the cell migration. Our study described the distinct cellular composition and molecular alterations in primary and metastatic sites in HNSCC patients based on their HPV status. These results provide insights into HNSCC biology in the context of HPV infection and its potential clinical implications.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/patología , Virus del Papiloma Humano , Papillomaviridae/genética , Neoplasias de Cabeza y Cuello/genética , Perfilación de la Expresión Génica/métodos , ARN , Microambiente Tumoral/genéticaRESUMEN
PURPOSE: The efficacy of exercise in men with prostate cancer (PCa) on active surveillance (AS) remains unclear. In this meta-analysis, we aimed to examine the effects of exercise in PCa patients on AS. METHODS: A literature search was conducted in PubMed, EMBASE, and the Cochrane Library using search terms, including exercise, PCa, AS, and randomized controlled trials (RCTs). The means and standard deviations for peak oxygen consumption (VO2peak), prostate-specific antigen (PSA) levels, and quality of life (QoL) were extracted for the intervention and control groups. A random-effects model was used to summarize the effects of exercise. RESULTS: Of the 158 identified studies, six RCTs with 332 patients were included. The interventions included lifestyle modifications (aerobic exercise + diet) in three studies and different exercise modalities in three studies. The intervention duration was 2-12 months; three interventions were supervised and three were self-directed. The pooled weighted mean difference between exercise and usual care for VO2peak was 1.42 mL/kg/min (95% confidence interval [CI]: 0.30 to 2.54, P ≤ 0.001). A non-significant effect was observed for QoL (pooled standardized mean difference [SMD]: 0.24, 95% CI: - 0.03 to 0.51, P = 0.08) which became statistically significant and stronger after excluding one outlier study (P < 0.001). Exercise also had a positive effect on PSA levels (pooled SMD: - 0.43, 95% CI: - 0.87 to 0.01, P = 0.05). CONCLUSION: Exercise improves cardiorespiratory fitness and may improve QoL and PSA levels in men with PCa on AS. Further studies with larger sample sizes are warranted to obtain more reliable results.
Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Masculino , Antígeno Prostático Específico/sangre , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Terapia por Ejercicio/métodos , Espera Vigilante/métodosRESUMEN
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial-mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs.
Asunto(s)
Antineoplásicos , Proliferación Celular , Colágeno , Células Madre Neoplásicas , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Madre Neoplásicas/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Animales , Movimiento Celular/efectos de los fármacos , Andamios del Tejido , Transición Epitelial-Mesenquimal/efectos de los fármacos , Organismos Acuáticos , Descubrimiento de Drogas/métodosRESUMEN
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Nicho de Células Madre , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Nicho de Células Madre/fisiología , Animales , Médula Ósea/metabolismo , Médula Ósea/fisiología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citologíaRESUMEN
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Asunto(s)
Neoplasias Hematológicas , Células Madre Neoplásicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Hematopoyéticas/metabolismo , Leucemia/patología , Leucemia/genética , Leucemia/metabolismo , Transducción de Señal , Animales , Microambiente Tumoral/genética , Resistencia a Antineoplásicos/genética , Epigénesis Genética , MutaciónRESUMEN
Atherosclerosis is characterized by the deposition and accumulation of extracellular cholesterol and inflammatory cells in the arterial blood vessel walls, and 27-hydroxycholesterol (27OHChol) is the most abundant cholesterol metabolite. 27OHChol is an oxysterol that induces immune responses, including immune cell activation and chemokine secretion, although the underlying mechanisms are not fully understood. In this study, we investigated the roles of the mechanistic target of rapamycin (mTOR) in 27HChol-induced inflammation using rapamycin. Treating monocytic cells with rapamycin effectively reduced the expression of CCL2 and CD14, which was involved with the increased immune response by 27OHChol. Rapamycin also suppressed the phosphorylation of S6 and 4EBP1, which are downstream of mTORC1. Additionally, it also alleviates the increase in differentiation markers into macrophage. These results suggest that 27OHChol induces inflammation by activating the mTORC1 signaling pathway, and rapamycin may be useful for the treatment of atherosclerosis-related inflammation involving 27OHchol.
Asunto(s)
Inflamación , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Sirolimus , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Humanos , Sirolimus/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal/efectos de los fármacos , Hidroxicolesteroles/farmacología , Quimiocina CCL2/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Fosforilación/efectos de los fármacos , Receptores de Lipopolisacáridos/metabolismo , Células THP-1 , Monocitos/efectos de los fármacos , Monocitos/metabolismoRESUMEN
Hematopoietic stem cells (HSCs) reside in specific microenvironments that facilitate their regulation through both internal mechanisms and external cues. Bone marrow endothelial cells (BMECs), which are found in one of these microenvironments, play a vital role in controlling the self-renewal and differentiation of HSCs during hematological stress. We previously showed that 27-hydroxycholesterol (27HC) administration of exogenous 27HC negatively affected the population of HSCs and progenitor cells by increasing the reactive oxygen species levels in the bone marrow. However, the effect of 27HC on BMECs is unclear. To determine the function of 27HC in BMECs, we employed magnetic-activated cell sorting to isolate CD31+ BMECs and CD31- cells. We demonstrated the effect of 27HC on CD31+ BMECs and HSCs. Treatment with exogenous 27HC led to a decrease in the number of BMECs and reduced the expression of adhesion molecules that are crucial for maintaining HSCs. Our results demonstrate that BMECs are sensitively affected by 27HC and are crucial for HSC survival.
Asunto(s)
Células de la Médula Ósea , Células Endoteliales , Células Madre Hematopoyéticas , Hidroxicolesteroles , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/metabolismo , Animales , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Diferenciación Celular/efectos de los fármacos , Médula Ósea/metabolismo , Médula Ósea/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Camellia is an important plant genus that includes well-known species such as C. sinensis, C. oleifera, and C. japonica. The C. sinensis cultivar 'Sangmok', one of Korea's standard types of tea landraces, is a small evergreen tree or shrub. Genome annotation has shown that Korean tea plants have special and unique benefits and superior components, such as catechin. The genome of Camellia sinensis cultivar 'Sangmok' was assembled on the chromosome level, with a length of 2678.62 Mbp and GC content of 38.16%. Further, 15 chromosome-scale scaffolds comprising 82.43% of the assembly (BUSCO completeness, 94.3%) were identified. Analysis of 68,151 protein-coding genes showed an average of 5.003 exons per gene. Among 82,481 coding sequences, the majority (99.06%) were annotated by Uniprot/Swiss-Prot. Further analysis revealed that 'Sangmok' is closely related to C. sinensis, with a divergence time of 60 million years ago. A total of 3336 exclusive gene families in 'Sangmok' were revealed by gene ontology analysis to play roles in auxin transport and cellular response mechanisms. By comparing these exclusive genes with 551 similar catechin genes, 17 'Sangmok'-specific catechin genes were identified by qRT-PCR, including those involved in phytoalexin biosynthesis and related to cytochrome P450. The 'Sangmok' genome exhibited distinctive genes compared to those of related species. This comprehensive genomic investigation enhances our understanding of the genetic architecture of 'Sangmok' and its specialized functions. The findings contribute valuable insights into the evolutionary and functional aspects of this plant species.
Asunto(s)
Camellia sinensis , Catequina , Humanos , Metabolismo Secundario , Exones , Cromosomas Humanos Par 15 , Camellia sinensis/genética , TéRESUMEN
Several studies have demonstrated an association between the risk asthma/allergic rhinitis and the environment. However, to date, no systematic review or meta-analysis has investigated these factors. We conducted a systematic review and meta-analysis to assess the association between urban/rural living and the risk of asthma and allergic rhinitis. We searched the Embase and Medline databases for relevant articles and included only cohort studies to observe the effects of time-lapse geographical differences. Papers containing information on rural/urban residence and respiratory allergic diseases were eligible for inclusion. We calculated the relative risk (RR) and 95% confidence interval (CI) using a 2 × 2 contingency table and used random effects to pool data. Our database search yielded 8388 records, of which 14 studies involving 50,100,913 participants were finally included. The risk of asthma was higher in urban areas compared to rural areas (RR, 1.27; 95% CI, 1.12-1.44, p < 0.001), but not for the risk of allergic rhinitis (RR, 1.17; 95% CI, 0.87-1.59, p = 0.30). The risk of asthma in urban areas compared to rural areas was higher in the 0-6 years and 0-18 years age groups, with RRs of 1.21 (95% CI, 1.01-1.46, p = 0.04) and 1.35 (95% CI, 1.12-1.63, p = 0.002), respectively. However, there was no significant difference in the risk of asthma between urban and rural areas for children aged 0-2 years, with a RR of 3.10 (95% CI, 0.44-21.56, p = 0.25). Our study provides epidemiological evidence for an association between allergic respiratory diseases, especially asthma, and urban/rural living. Future research should focus on identifying the factors associated with asthma in children living in urban areas. The review was registered in PROSPERO (CRD42021249578).
Asunto(s)
Asma , Rinitis Alérgica , Niño , Humanos , Asma/epidemiología , Rinitis Alérgica/epidemiología , Estudios de Cohortes , Población Rural , Población UrbanaRESUMEN
Aminoacyl-tRNA synthetases (ARSs) are emerging as important regulators in various immune diseases; however, their roles in immune cells remain unclear. In this study, using alanyl-tRNA synthetase (AARS) mutant (sti) mice with neurodegenerative disorder, we investigated the effect of translational fidelity in immune cells. Dysfunctional AARS caused disorders in immune cell responses and cellularity. The impairment was caused by dampened TCR signaling than cytokine signaling. Therefore, sti mutant inhibits TCR signaling, impeding T cell survival and responses. B cell numbers were decreased in sti mice. Despite low B cell cellularity, serum IgM, IgA, and IgE levels were higher in sti mice than in wild-type mice. Misacylation of ARS and the consequent translational infidelity induce disturbances in signaling pathways critical for immune cell survival and responses. Our findings provide a novel mechanism by which translational fidelity might play a critical role in cellular and humoral immune responses.
Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Linfocitos B/inmunología , Linfocitos T/inmunología , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Proliferación Celular/efectos de los fármacos , Citocinas/farmacología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunoglobulina A/sangre , Inmunoglobulina E/sangre , Inmunoglobulina M/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/metabolismoRESUMEN
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTß, IL-22R, RANK, LTßR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Asunto(s)
FN-kappa B , Timocitos , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Citoprotección , Timo , Células Epiteliales , Colágeno/metabolismo , Expresión Génica , Proliferación Celular , Ciclofosfamida/efectos adversosRESUMEN
In individuals with Alzheimer's disease, the brain exhibits elevated levels of IL-1ß and oxygenated cholesterol molecules (oxysterols). This study aimed to investigate the effects of side-chain oxysterols on IL-1ß expression using HMC3 microglial cells and ApoE-deficient mice. Treatment of HMC3 cells with 25-hydroxycholesterol (25OHChol) and 27-hydroxycholesterol (27OHChol) led to increased IL-1ß expression at the transcript and protein levels. Additionally, these oxysterols upregulated the surface expression of MHC II, a marker of activated microglia. Immunohistochemistry performed on the mice showed increased microglial expression of IL-1ß and MHC II when fed a high-cholesterol diet. However, cholesterol and 24s-hydroxycholesterol did not increase IL-1ß transcript levels or MHC II expression. The extent of IL-1ß increase induced by 25OHChol and 27OHChol was comparable to that caused by oligomeric ß-amyloid, and the IL-1ß expression induced by the oxysterols was not impaired by polymyxin B, which inhibited lipopolysaccharide-induced IL-1ß expression. Both oxysterols enhanced the phosphorylation of Akt, ERK, and Src, and inhibition of these kinase pathways with pharmacological inhibitors suppressed the expression of IL-1ß and MHC II. The pharmacological agents chlorpromazine and cyclosporin A also impaired the oxysterol-induced expression of IL-1ß and upregulation of MHC II. Overall, these findings suggest that dysregulated cholesterol metabolism leading to elevated levels of side-chain oxysterols, such as 25OHChol and 27OHChol, can activate microglia to secrete IL-1ß through a mechanism amenable to pharmacologic intervention. The activation of microglia and subsequent neuroinflammation elicited by the immune oxysterols can contribute to the development of neurodegenerative diseases.
Asunto(s)
Microglía , Oxiesteroles , Animales , Ratones , Microglía/metabolismo , Oxiesteroles/metabolismo , Enfermedades Neuroinflamatorias , Macrófagos/metabolismo , Encéfalo/metabolismoRESUMEN
The expression of CD14 in monocytic cells is elevated in atherosclerotic lesions where 7-oxyterols are abundant. However, it remains unknown whether atheroma-relevant 7-oxysterols are involved in receptor expression. Therefore, we investigated the effects of 7α-hydroxycholesterol (7αOHChol), 7ß-hydroxycholesterol (7ßOHChol), and 7-ketocholesterol (7K) on CD14 levels in THP-1 cells. The three 7-oxysterols increased CD14 transcript levels at a distinct time point, elevated cellular CD14 protein levels, and promoted the release of soluble CD (sCD14) from THP-1 cells. Our data revealed that CD14 expression was most strongly induced after treatment with 7αOHChol. Moreover, 7αOHChol alone upregulated membrane-bound CD14 levels and enhanced responses to lipopolysaccharides, as determined by CCL2 production and monocytic cell migration. The 7-oxysterols also increased the gelatinolytic activity of MMP-9, and a cell-permeable, reversible MMP-9 inhibitor, MMP-9 inhibitor I, significantly impaired sCD14 release. These results indicate that 7-oxysterols differentially induce CD14 expression in vascular cells and contribute to the monocytic cell expression of CD14 via overlapping, but distinct, mechanisms.
Asunto(s)
Oxiesteroles , Placa Aterosclerótica , Humanos , Oxiesteroles/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/metabolismo , Monocitos/metabolismoRESUMEN
Platycodon grandiflorum belongs to the Campanulaceae family and is an important medicinal and food plant in East Asia. However, on the whole, the genome evolution of P. grandiflorum and the molecular basis of its major biochemical pathways are poorly understood. We reported a chromosome-scale genome assembly of P. grandiflorum based on a hybrid method using Oxford Nanopore Technologies, Illumina sequences, and high-throughput chromosome conformation capture (Hi-C) analysis. The assembled genome was finalized as 574 Mb, containing 41,355 protein-coding genes, and the genome completeness was assessed as 97.6% using a Benchmarking Universal Single-Copy Orthologs analysis. The P. grandiflorum genome comprises nine pseudo-chromosomes with 56.9% repeat sequences, and the transcriptome analysis revealed an expansion of the 14 beta-amylin genes related to triterpenoid saponin biosynthesis. Our findings provide an understanding of P. grandiflorum genome evolution and enable genomic-assisted breeding for the mass production of important components such as triterpenoid saponins.
Asunto(s)
Codonopsis , Platycodon , Saponinas , Triterpenos , Platycodon/genética , Platycodon/química , Saponinas/genética , Saponinas/química , Triterpenos/química , Fitomejoramiento , Cromosomas , República de Corea , Raíces de Plantas/químicaRESUMEN
Metabolic alterations in cancer represent convergent effects of oncogenic mutations. We hypothesized that a metabolism-restricted genetic screen, comparing normal primary mouse hematopoietic cells and their malignant counterparts in an ex vivo system mimicking the bone marrow microenvironment, would define distinctive vulnerabilities in acute myeloid leukemia (AML). Leukemic cells, but not their normal myeloid counterparts, depended on the aldehyde dehydrogenase 3a2 (Aldh3a2) enzyme that oxidizes long-chain aliphatic aldehydes to prevent cellular oxidative damage. Aldehydes are by-products of increased oxidative phosphorylation and nucleotide synthesis in cancer and are generated from lipid peroxides underlying the non-caspase-dependent form of cell death, ferroptosis. Leukemic cell dependence on Aldh3a2 was seen across multiple mouse and human myeloid leukemias. Aldh3a2 inhibition was synthetically lethal with glutathione peroxidase-4 (GPX4) inhibition; GPX4 inhibition is a known trigger of ferroptosis that by itself minimally affects AML cells. Inhibiting Aldh3a2 provides a therapeutic opportunity and a unique synthetic lethality to exploit the distinctive metabolic state of malignant cells.
Asunto(s)
Aldehído Oxidorreductasas/fisiología , Carbolinas/farmacología , Ciclohexilaminas/farmacología , Ferroptosis/efectos de los fármacos , Hematopoyesis/fisiología , Leucemia Mieloide Aguda/enzimología , Proteínas de Neoplasias/fisiología , Fenilendiaminas/farmacología , Aldehído Oxidorreductasas/genética , Aldehídos/farmacología , Animales , Línea Celular Tumoral , Citarabina/administración & dosificación , Doxorrubicina/administración & dosificación , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Peroxidación de Lípido , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Ácido Oléico/farmacología , Proteínas de Fusión Oncogénica/fisiología , Oxidación-Reducción , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Fosfolípido Hidroperóxido Glutatión Peroxidasa/fisiologíaRESUMEN
BACKGROUND: Microbiome has been shown to substantially contribute to some cancers. However, the diagnostic implications of microbiome in head and neck squamous cell carcinoma (HNSCC) remain unknown. METHODS: To identify the molecular difference in the microbiome of oral and non-oral HNSCC, primary data was downloaded from the Kraken-TCGA dataset. The molecular differences in the microbiome of oral and non-oral HNSCC were identified using the linear discriminant analysis effect size method. RESULTS: In the study, the common microbiomes in oral and non-oral cancers were Fusobacterium, Leptotrichia, Selenomonas and Treponema and Clostridium and Pseudoalteromonas, respectively. We found unique microbial signatures that positively correlated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in oral cancer and positively and negatively correlated KEGG pathways in non-oral cancer. In oral cancer, positively correlated genes were mostly found in prion diseases, Alzheimer disease, Parkinson disease, Salmonella infection, and Pathogenic Escherichia coli infection. In non-oral cancer, positively correlated genes showed Herpes simplex virus 1 infection and Spliceosome and negatively correlated genes showed results from PI3K-Akt signaling pathway, Focal adhesion, Regulation of actin cytoskeleton, ECM-receptor interaction and Dilated cardiomyopathy. CONCLUSIONS: These results could help in understanding the underlying biological mechanisms of the microbiome of oral and non-oral HNSCC. Microbiome-based oncology diagnostic tool warrants further exploration.