Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(38): e2402341, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38795003

RESUMEN

Poly(3,4-ethylenedioxythiophene) (PEDOT), particularly in its complex form with poly(styrene sulfonate) (PEDOT:PSS), stands out as a prominent example of an organic conductor. Renowned for its exceptional conductivity, substantial light transmissibility, water processability, and remarkable flexibility, PEDOT:PSS has earned its reputation as a leading conductive polymer. This study explores the unique effects of two additives, Bisphenol A diglycidyl ether (DGEBA) and Dimethyl sulfoxide (DMSO), on the PSS component of PEDOT:PSS films are shown. Both additives induce grain size growth, while DGEBA makes the PEDOT:PSS layer hydrophobic, which acts as a passivation to protect the perovskite layer, which is vulnerable to moisture. The other additive, DMSO, separates the PSS groups, resulting in increased conductivity through the free movement of holes. With these multi-modified p-type PEDOT:PSS, the ITO/M-PEDOT:PSS/Perovskite/PCBM/Ag structured reverse structure solar cell has improved the power conversion efficiency (PCE) from 15.28% to 17.80% compared to the control cell with conventional PEDOT:PSS. It also maintains 90% for 500 h at 60 °C and 300 h at 1 sun illuminating conditions.

2.
Inorg Chem ; 63(25): 11660-11666, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38861724

RESUMEN

Hybrid nanoparticles (NPs) have attracted considerable attention because of their ability to provide diverse properties by integrating the inherent properties of multiple components; however, synthetic strategies to control their morphology remain unexplored. In this study, a new method was used to control the morphology and optical properties of Au-Ni heterostructure (ANH) NPs. Unique morphological changes were observed by varying the Au/Ni precursor ratio from 2:1 to 1:4, exhibiting a shape transformation from dumbbell-like to quasi-spherical owing to the Ni NP size expansion, whereas the Au NP maintained their size. Moreover, increasing the Ni ratio induced plasmonic band broadening and wavelength redshift, resulting in color changes from red to navy and black. In terms of the structure, the atomic orientation of the crystallite showed that even a large lattice mismatch can result in heterojunctions at the NPs. In addition, the reaction aliquots uncovered heterogeneous nucleation and growth of ANH NPs in the colloidal system, demonstrating Ni reduction on the preformed Au NP owing to the reduction in potential gap. This study provides new insights into controlling the morphology of hybrid NPs using colloidal synthesis and the design of optimized materials for various applications.

3.
Nanotechnology ; 35(38)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958589

RESUMEN

Green energy technology is generally becoming one of hot issues that need to be solved due to the adverse effects on the environment of fossil fuels. One of the strategies being studied and developed by theorists and experimentalists is the use of photoelectrochemical (PEC) cells, which are emerging as a candidate to produce hydrogen from water splitting. However, creating photoelectrodes that meet the requirements for PEC water splitting has emerged as the primary obstacle in bringing this technology to commercial fruition. Here, we construct a heterostructure, which consists of MoS2/TiO2/Au nanoparticles (NPs) to overcome the drawbacks of the photoanode. Owing to the dependence on charge transfer, the bandgap of MoS2/TiO2and the utilization the Au NPs as a stimulant for charges separation of TiO2by localized surface plasmon resonances effect as well as the increase of hot electron injection to cathode, leading to photocatalytic activities are improved. The results have recorded a significant increase in the photocurrent density from 2.3µAcm-2of TiO2to approximately 16.3µAcm-2of MoS2/TiO2/Au NPs. This work unveils a promising route to enhance the visible light adsorption and charge transfer in photo-electrode of the PEC cells by combining two-dimensional materials with metal NPs.

4.
Phys Chem Chem Phys ; 26(2): 749-759, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37800279

RESUMEN

Empirical measurements of solution vapor pressure of ternary acetonitrile (MeCN) H2O-NaCl-MeCN mixtures were recorded, with NaCl concentrations ranging from zero to the saturation limit, and MeCN concentrations ranging from zero to an absolute mole fraction of 0.64. After accounting for speciation, the variability of the Henry's law coefficient at vapor-liquid equilibrium (VLE) of MeCN ternary mixtures decreased from 107% to 5.1%. Solute speciation was modeled using a mass action solution model that incorporates solute solvation and ion-pairing phenomena. Two empirically determined equilibrium constants corresponding to solute dissociation and ion pairing were utilized for each solute. When speciation effects were considered, the solid-liquid equilibrium of H2O-NaCl-MeCN mixtures appear to be governed by a simple saturation equilibrium constant that is consistent with the binary H2O-NaCl saturation coefficient. Further, our results indicate that the precipitation of NaCl in the MeCN ternary mixtures was not governed by changes in the dielectric constant. Our model indicates that the compositions of the salt-induced liquid-liquid equilibrium (LLE) boundary of the H2O-NaCl-MeCN mixture correspond to the binary plateau activity of MeCN, a range of concentrations over which the activity remains largely invariant in the binary water-MeCN system. Broader comparisons with other ternary miscible organic solvent (MOS) mixtures suggest that salt-induced liquid-liquid equilibrium exists if: (1) the solution displays a positive deviation from the ideal limits governed by Raoult's law; and (2) the minimum of the mixing free energy profile for the binary water-MOS system is organic-rich. This work is one of the first applications of speciation-based solution models to a ternary system, and the first that includes an organic solute.

5.
Theor Appl Genet ; 136(7): 166, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393202

RESUMEN

KEY MESSAGE: One major quantitative trait loci and candidate gene for salt tolerance were identified on chromosome 3 from a new soybean mutant derived from gamma-ray irradiation, which will provide a new genetic resource for improving soybean salt tolerance. Soil salinity is a worldwide problem that reduces crop yields, but the development of salt-tolerant crops can help overcome this challenge. This study was conducted with the purpose of evaluating the morpho-physiological and genetic characteristics of a new salt-tolerant mutant KA-1285 developed using gamma-ray irradiation in soybean (Glycine max L.). The morphological and physiological responses of KA-1285 were compared with salt-sensitive and salt-tolerant genotypes after treatment with 150 mM NaCl for two weeks. In addition, a major salt tolerance quantitative trait locus (QTL) was identified on chromosome 3 in this study using the Daepung X KA-1285 169 F2:3 population, and a specific deletion was identified in Glyma03g171600 (Wm82.a2.v1) near the QTL region based on re-sequencing analysis. A kompetitive allele-specific PCR (KASP) marker was developed based on the deletion of Glyma03g171600 which distinguished the wild-type and mutant alleles. Through the analysis of gene expression patterns, it was confirmed that Glyma03g171700 (Wm82.a2.v1) is a major gene that controls salt tolerance functions in Glyma03g32900 (Wm82.a1.v1). These results suggest that the gamma-ray-induced mutant KA-1285 has the potential to be employed for the development of a salt-tolerant cultivar and provide useful information for genetic research related to salt tolerance in soybeans.


Asunto(s)
Glycine max , Glycine max/genética , Alelos , Rayos gamma , Genotipo , Reacción en Cadena de la Polimerasa
6.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37061790

RESUMEN

Waste plastic presently accumulates in landfills or the environment. While natural microbial metabolisms can degrade plastic polymers, biodegradation of plastic is very slow. This study demonstrates that chemical deconstruction of polyethylene terephthalate (PET) with ammonium hydroxide can replace the rate limiting step (depolymerization) and by producing plastic-derived terephthalic acid and terephthalic acid monoamide. The deconstructed PET (DCPET) is neutralized with phosphoric acid prior to bioprocessing, resulting in a product containing biologically accessible nitrogen and phosphorus from the process reactants. Three microbial consortia obtained from compost and sediment degraded DCPET in ultrapure water and scavenged river water without addition of nutrients. No statistically significant difference was observed in growth rate compared to communities grown on DCPET in minimal culture medium. The consortia were dominated by Rhodococcus spp., Hydrogenophaga spp., and many lower abundance genera. All taxa were related to species known to degrade aromatic compounds. Microbial consortia are known to confer flexibility in processing diverse substrates. To highlight this, we also demonstrate that two microbial consortia can grow on similarly deconstructed polyesters, polyamides, and polyurethanes in water instead of medium. Our findings suggest that microbial communities may enable flexible bioprocessing of mixed plastic wastes when coupled with chemical deconstruction.


Asunto(s)
Microbiota , Plásticos , Plásticos/metabolismo , Hidróxido de Amonio , Biodegradación Ambiental , Agua
7.
Sensors (Basel) ; 23(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37430754

RESUMEN

This paper describes Monolithic Microwave Integrated Circuits (MMICs) for an X-band radar transceiver front-end implemented in 0.25 µm GaN High Electron Mobility Transistor (HEMT) technology. Two versions of single pole double throw (SPDT) T/R switches are introduced to realize a fully GaN-based transmit/receive module (TRM), each of which achieves an insertion loss of 1.21 dB and 0.66 dB at 9 GHz, IP1dB higher than 46.3 dBm and 44.7 dBm, respectively. Therefore, it can substitute a lossy circulator and limiter used for a conventional GaAs receiver. A driving amplifier (DA), a high-power amplifier (HPA), and a robust low-noise amplifier (LNA) are also designed and verified for a low-cost X-band transmit-receive module (TRM). For the transmitting path, the implemented DA achieves a saturated output power (Psat) of 38.0 dBm and output 1-dB compression (OP1dB) of 25.84 dBm. The HPA reaches a Psat of 43.0 dBm and power-added efficiency (PAE) of 35.6%. For the receiving path, the fabricated LNA measures a small-signal gain of 34.9 dB and a noise figure of 2.56 dB, and it can endure higher than 38 dBm input power in the measurement. The presented GaN MMICs can be useful in implementing a cost-effective TRM for Active Electronically Scanned Array (AESA) radar systems at X-band.

8.
Sensors (Basel) ; 22(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590803

RESUMEN

We present a W-band 8-way wideband power amplifier (PA) for a high precision frequency modulated continuous wave (FMCW) radar in 65-nm CMOS technology. To achieve a broadband operation with an improved output power for a high range resolution and high distance coverage of FMCW radar sensors, a balanced architecture is employed with the Lange coupler which naturally combines the output powers from two 4-way push-pull PAs. By utilizing a transformer-based push-pull structure with a cross-coupled capacitive neutralization technique, the gate-drain capacitance of the 4-way PA is compensated for the stabilization with an improved power gain. Interstage matching was performed with transformers for a reduced loss from the matching network and minimal area occupation. The implemented balanced 8-way PA achieved a saturated output power (Psat) of 16.5 dBm, a 1-dB compressed output power (OP1dB) of 13.3 dBm, a power-added efficiency (PAE) of 9.9% at 90 GHz and 3-dB power bandwidth was 20.4 GHz (79.2-99.6 GHz).

9.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897719

RESUMEN

TiO2 has aroused considerable attentions as a promising photocatalytic material for decades due to its superior material properties in several fields such as energy and environment. However, the main dilemmas are its wide bandgap (3-3.2 eV), that restricts the light absorption in limited light wavelength region, and the comparatively high charge carrier recombination rate of TiO2, is a hurdle for efficient photocatalytic CO2 conversion. To tackle these problems, lots of researches have been implemented relating to structural and material modification to improve their material, optical, and electrical properties for more efficient photocatalytic CO2 conversion. Recent studies illustrate that crystal facet engineering could broaden the performance of the photocatalysts. As same as for nanostructures which have advantages such as improved light absorption, high surface area, directional charge transport, and efficient charge separation. Moreover, strategies such as doping, junction formation, and hydrogenation have resulted in a promoted photocatalytic performance. Such strategies can markedly change the electronic structure that lies behind the enhancement of the solar spectrum harnessing. In this review, we summarize the works that have been carried out for the enhancement of photocatalytic CO2 conversion by material and structural modification of TiO2 and TiO2-based photocatalytic system. Moreover, we discuss several strategies for synthesis and design of TiO2 photocatalysts for efficient CO2 conversion by nanostructure, structure design of photocatalysts, and material modification.


Asunto(s)
Dióxido de Carbono , Nanoestructuras , Catálisis , Nanoestructuras/química , Titanio/química
10.
Sensors (Basel) ; 21(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670125

RESUMEN

Explaining the prediction of deep neural networks makes the networks more understandable and trusted, leading to their use in various mission critical tasks. Recent progress in the learning capability of networks has primarily been due to the enormous number of model parameters, so that it is usually hard to interpret their operations, as opposed to classical white-box models. For this purpose, generating saliency maps is a popular approach to identify the important input features used for the model prediction. Existing explanation methods typically only use the output of the last convolution layer of the model to generate a saliency map, lacking the information included in intermediate layers. Thus, the corresponding explanations are coarse and result in limited accuracy. Although the accuracy can be improved by iteratively developing a saliency map, this is too time-consuming and is thus impractical. To address these problems, we proposed a novel approach to explain the model prediction by developing an attentive surrogate network using the knowledge distillation. The surrogate network aims to generate a fine-grained saliency map corresponding to the model prediction using meaningful regional information presented over all network layers. Experiments demonstrated that the saliency maps are the result of spatially attentive features learned from the distillation. Thus, they are useful for fine-grained classification tasks. Moreover, the proposed method runs at the rate of 24.3 frames per second, which is much faster than the existing methods by orders of magnitude.

11.
Small ; 15(8): e1804465, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30690887

RESUMEN

The photovoltaic performance of perovskite solar cells is highly dependent on the control of morphology and crystallization of perovskite film, which usually requires a controlled atmosphere. Therefore, fully ambient fabrication is a desired technology for the development of perovskite solar cells toward real production. Here, an air-knife assisted recrystallization method is reported, based on a simple bath-immersion to prepare high-quality perovskite absorbers. The resulted film shows a strong crystallinity with pure domains and low trap-state density, which contribute to the device performance and stability. The proposed method can operate in a wide process window, such as variable relative humidity and bath-immersion conditions, demonstrating a power conversion efficiency over 19% and 27% under 1 sun and 500-2000 lux dim-light illumination respectively, which is among the highest performance of ambient-process perovskite solar cells.

12.
Nanotechnology ; 29(50): 505501, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30240367

RESUMEN

Highly sensitive and selective non-enzymatic glucose detection was developed using nanoporous Ag flowers on a Ni substrate. The cyclic scanning electrodeposition (CSE) method was used to fabricate Ag flowers on a Ni substrate in an alkaline electrolyte. The nanoporous Ag flowers were then formed by repeated CSE in NaOH. The growth mechanisms of the nanoporous Ag flowers were systematically studied, and these mechanisms can be extended to the formation of other metal, bimetal or metal oxide. The synthesized three-dimensional nanoporous Ag flowers on the Ni substrate were used in the electro-oxidation of glucose, demonstrating a wide linear range (0.1 µM to 1 mM), fast response time (<2 s), low detection limit of 0.1 µM (S/N = 3) and a high sensitivity to detect glucose in the presence of uric acid (UA) and ascorbic acid (AA) at the level of their physiological concentrations. Apart from the nanoporous Ag flowers, the formation of a NiO thin layer on the Ni substrate during CSE also contributed to the high selectivity. This work indicates the potential for developing a fast, sensitive, selective and stable electrochemical sensor for diabetes diagnosis.


Asunto(s)
Glucemia/análisis , Técnicas Electroquímicas/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Plata/química , Electrodos , Humanos , Límite de Detección , Nanoporos/ultraestructura , Níquel/química
13.
Am J Emerg Med ; 36(9): 1608-1612, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29373168

RESUMEN

OBJECTIVES: The incidence of urinary tract infection (UTI) due to extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli has increased over recent years. Initial empirical therapy is often ineffective for these resistant isolates resulting in prolonged hospitalization and increased mortality. This study was conducted to determine the risk factors of UTI caused by ESBL E. coli in the emergency department (ED). METHODS: This is a retrospective case-control study at a university hospital in Korea with UTI patients who visited ED between June 2015 and December 2016. We compared case patients with ESBL E. coli UTI (n = 50) to control patients with non-ESBL-producing E. coli UTI (n = 100), which were matched for age and sex. Multivariate logistic regression analysis was used to explore risk factors. RESULTS: Our study showed that hospital-acquired infection (OR = 3.86; 95% CI = 1.26-11.8; p = .017), prior UTI within 1 year (OR = 3.26; 95% CI = 1.32-8.05; p = .010), and underlying cerebrovascular disease (OR = 3.24; 95% CI = 1.45-7.25; p = .004) were independent risk factors for acquisition of ESBL-producing E. coli. Notably, 35 (70%) out of 50 case patients had community-acquired infection, and 68% and 54% of ESBL E. coli were resistance to ciprofloxacin and trimethoprim-sulfamethoxazole, respectively. On the contrary, 98% of ESBL E. coli was susceptible to amikacin. CONCLUSION: The main risk factors identified in our study should be considered when treating UTI patients in ED. Amikacin may improve the outcome of empirical treatment without increasing carbapenem utilization.


Asunto(s)
Infección Hospitalaria/microbiología , Infecciones por Escherichia coli/enzimología , Infecciones Urinarias/microbiología , Anciano , Antiinfecciosos/uso terapéutico , Estudios de Casos y Controles , Infecciones Comunitarias Adquiridas , Farmacorresistencia Bacteriana Múltiple , Servicio de Urgencia en Hospital , Escherichia coli/enzimología , Femenino , Humanos , Masculino , Persona de Mediana Edad , República de Corea , Estudios Retrospectivos , Factores de Riesgo , beta-Lactamasas/biosíntesis
14.
Opt Express ; 25(2): 713-719, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28157960

RESUMEN

A wearable electroencephalogram (EEG) is a small mobile device used for long-term brain monitoring systems. Applications of these systems include fatigue monitoring, mental/emotional monitoring, and brain-computer interfaces. However, the usage of wireless wearable EEG systems is limited due to the risks posed by the wireless RF communication radiation in a long-term exposure to the human brain. A novel microwave radiation-free system was developed by integrating visible light communication technology into a wearable EEG device. In this work, we investigated the system's performance in transmitting EEG data at different illuminance level and proposed an algorithm that functions at low illuminance levels for increased transmission distance. Using a 30 Hz smartphone camera, the proposed system was able to transmit 2.4 kbps of error-free EEG data up to 4 meter, which is equal to ~300 lux using an aspheric focus lens.

16.
Opt Lett ; 39(11): 3130-3, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24875994

RESUMEN

This Letter proposes a mechanical impedance (MI) measurement technique using noncontact laser ultrasound. The ultrasound is generated by shooting a pulse laser beam onto a target structure, and its response is measured using a laser vibrometer. Once ultrasound propagation converges to structural vibration, MI is formed over the entire structure. Because noncontact lasers are utilized, this technique is applicable in harsh environments, free of electromagnetic interference, and able to perform wide-range scanning. The formation of MI and its feasibility for damage detection are verified through thermo-mechanical finite element analysis and lab-scale experiments.

17.
ChemSusChem ; : e202400945, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126263

RESUMEN

As perovskite solar device is burgeoning photoelectronic device, numerous studies to optimize perovskite solar device have been demonstrated. Amongst various advantages from perovskite light absorbing layer, attractive property of tunable bandgap allowed perovskite to be adopted in many different fields. Easily tunable bandgap property of perovskite opened the wide application and to get the most out of its potential, many researchers contributed as well. By precursor composition engineering, narrow bandgap with bandgap of less than 1.4 eV and wide bandgap with bandgap of more than 1.7 eV were achieved. Optimization of both narrow and wide bandgap perovskite solar cell could pave the way to all-perovskite tandem solar cell which is combination of top cell with wide bandgap and bottom cell with narrow bandgap. This review highlights numerous efforts to advance device performance of both narrow and wide bandgap perovskite solar cell and how they challenged the issues. And finally, efforts to operate and utilize all-tandem perovskite device in real world will be discussed.

18.
Plants (Basel) ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256807

RESUMEN

Salt stress is a significant abiotic stress that reduces crop yield and quality globally. In this study, we utilized RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs) in response to salt stress induced by gamma-ray irradiation in a salt-tolerant soybean mutant. The total RNA library samples were obtained from the salt-sensitive soybean cultivar Kwangan and the salt-tolerant mutant KA-1285. Samples were taken at three time points (0, 24, and 72 h) from two tissues (leaves and roots) under 200 mM NaCl. A total of 967,719,358 clean reads were generated using the Illumina NovaSeq 6000 platform, and 94.48% of these reads were mapped to 56,044 gene models of the soybean reference genome (Glycine_max_Wm82.a2.v1). The DEGs with expression values were compared at each time point within each tissue between the two soybeans. As a result, 296 DEGs were identified in the leaves, while 170 DEGs were identified in the roots. In the case of the leaves, eight DEGs were related to the phenylpropanoid biosynthesis pathway; however, in the roots, Glyma.03G171700 within GmSalt3, a major QTL associated with salt tolerance in soybean plants, was differentially expressed. Overall, these differences may explain the mechanisms through which mutants exhibit enhanced tolerance to salt stress, and they may provide a basic understanding of salt tolerance in soybean plants.

19.
Dalton Trans ; 53(35): 14786-14794, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39162525

RESUMEN

The cation exchange reaction is a powerful method for generating nanomaterials with unique structures because of the easy control of the size, morphology, composition, and crystal structure of the nanoparticles. This study investigated the kinetically controlled morphology and composition of colloidal nanoparticles (NPs) through cation exchange reactions, specifically focusing on variations from copper sulfide to transition metal sulfides, including Co, Fe, Zn, and Mn sulfides. In the cation exchange reaction, Co exhibited the fastest exchange rate, followed by Fe, Mn, and Zn. The difference in kinetics rates affected the change in morphology; Co, with the fastest rate, was immediately and uniformly distributed in the NPs. For Fe, a sandwich structure was initially formed and this gradually transformed into a solid-solution phase. After exchanging Cu with Mn and Zn, a heterostructure was formed, which became increasingly clear as the reaction progressed. The transformation of the morphology and crystal structure were confirmed using XRD, TEM, and SEM analyses. The findings of this study suggest that the morphology and distinct structures of the exchanged particles can be controlled by manipulating the kinetics rates of cations through cation exchange reactions. This process offers a powerful tool for the tailored synthesis of colloidal nanoparticles and provides a design principle for enabling predictable outcomes through cation exchange reactions.

20.
J Colloid Interface Sci ; 633: 775-785, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36493742

RESUMEN

The efficient and selective photocatalytic CO2 conversion into higher-valued hydrocarbon products (e.g., methane and ethane) over covalent organic frameworks (COFs) remains a challenge, with all previously reported attempts producing carbon monoxide as the dominant product. Herein, we report a new ethene-based COF, through polycondensation of electron-rich (E)-1,2­diphenylethene and 1,3,6,8­tetraphenylpyrene units. The synthesized ethene-based COF functioned as an efficient metal-free photocatalyst for the conversion of CO2 into methane under visible light irradiation, with a selectivity of 100 %, a production rate of 14.7 µmol g-1h-1, and an apparent quantum yield of c.a. 0.99 % at 489.5 nm, which are the most promising values reported for CO2 conversion by a metal-free COF photocatalyst, without any support from a co-catalyst. The carbon origin of CH4 product is confirmed by isotope tracer 13CO2 experiment. Moreover, the photocatalytic system consistently produces methane for > 14 h with recyclability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA