Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 3): 119032, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685298

RESUMEN

Particulate matter with an aerodynamic diameter of ≤2.5 µm (PM2.5) can infiltrate deep into the respiratory system, posing significant health risks. Notably, the health burden of PM2.5 is more pronounced among the older adult population. With an aging population, the public health burden attributable to PM2.5 could escalate even if the current PM2.5 level remains stable. This study evaluated the number of deaths attributable to long-term PM2.5 exposure in the Republic of Korea between 2020 and 2050 and identified the PM2.5 concentration required at least to maintain the current PM2.5 health burden. To calculate mortality for 2020-2050, we performed a health impact assessment using 3-year (2019-2021) average population-weighted PM2.5 concentrations, age-specific population and mortality rates. In 2020, 33,578 [95% confidence interval (CI) = 31,708-35,448] deaths were attributable to PM2.5 exposure. Projecting forward, if the 2019-2021 average PM2.5 level remains constant, mortality is projected to be 112,953 (95% CI = 109,963-115,943) in 2050, more than three times higher than in 2020. To maintain the same level of health burden in 2050 as in 2020, the PM2.5 concentration needs to be immediately reduced to 5.8 µg/m3. In an age-specific analysis, the proportion of older adults (ages 65+) to total mortality would increase from 83% (2020) to 96% (2050), indicating that the rising mortality is predominantly driven by the aging population. By region, the reduction of PM2.5 concentrations, which is required immediately in 2020 to have the health burden in 2050 equal to that in 2020, varied from 3.6 µg/m3 in Goheung-gun (25% reduction) to 20.8 µg/m3 in Heungdeok-gu (82% reduction). Our study emphasizes the critical need for air quality management to consider aging populations when establishing PM2.5 air quality standards, as well as their associated policies and regulations.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Material Particulado , Salud Pública , República de Corea , Material Particulado/análisis , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Atmosféricos/análisis , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Adulto , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Adulto Joven , Envejecimiento , Adolescente , Mortalidad/tendencias , Niño , Preescolar
2.
Environ Res ; 261: 119633, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025348

RESUMEN

The Geostationary Environment Monitoring Spectrometer (GEMS) is the world's first geostationary instrument that monitors hourly gaseous air pollutant levels, including nitrogen dioxide (NO2). Using the first-of-its-kind capabilities of GEMS NO2 data, we examined how well GEMS NO2 levels can explain the spatiotemporal variabilities in hourly NO2 concentrations in the Republic of Korea for the year 2022. A correlation analysis between hourly GEMS NO2 levels and ground NO2 concentrations showed a higher spatial correlation [Pearson r = 0.56 (SD = 0.20)] than a temporal one [Pearson r = 0.42 (SD = 0.14)], on average. To take advantage of the enhanced spatial predictability of GEMS NO2 data, we employed a mixed effects model to allow hour-specific relationships between GEMS NO2 and NO2 concentrations on a given day in each region and subsequently estimated hourly NO2 concentrations in all urban and rural areas. The 10-fold cross validation demonstrated R2 = 0.72, mean absolute error (MAE) = 3.7 ppb, and root mean squared error (RMSE) = 5.5 ppb. The hourly variations of the relationships were attributed particularly to those of wind speed among meteorological parameters considered in this study. The spatial distributions of hourly estimated NO2 concentrations were highly correlated between hours [average r = 0.91 (SD = 0.06)]. Nonetheless, they represented the diurnal patterns of urban versus rural NO2 contrasts during the day [urban/rural NO2 ratios from 1.22 (5 p.m.) to 1.37 (12 p.m.)]. The newly retrieved GEMS NO2 data enable temporally as well as spatially resolved NO2 exposure assessment. In combination with the time-activity patterns of individual subjects, the GEMS NO2 data can generate 'sub-population' exposure estimates and therefore enhance health effect studies.

3.
Environ Res ; 261: 119712, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096989

RESUMEN

BACKGROUND: Previous studies reported that short-term exposure to ground-level ozone is associated with mortality risk. However, due to the limited monitored areas, existing studies were limited in assessing the nationwide risk and suggesting specific vulnerable populations to the ozone-mortality risk. METHODS: We performed a nationwide time-stratified case-crossover study to evaluate the association between short-term ozone and cause-specific mortality in South Korea (2015-2019). A machine learning-ensemble prediction model (a test R2 > 0.96) was used to assess the short-term ozone exposure. Stratification analysis was conducted to examine the high-risk populations, and the excess mortality due to non-compliance with the WHO guideline was also assessed. RESULTS: For all-cause mortality (1,343,077 cases), the risk associated with ozone (lag0- 1) was weakly identified (odd ratio: 1.005 with 95% CI: 0.997-1.014), and the risk was prominent in mortality with circulatory system diseases. In addition, based on the point estimates, the ozone-mortality risk was higher in people aged less than 65y, and this pattern was also observed in circulatory system disease deaths and urban areas. CONCLUSIONS: This study provides national estimates of mortality risks associated with short-term ozone. Results showed that the benefits of stricter air quality standards could be greater in vulnerable populations.

5.
Nanomaterials (Basel) ; 14(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38392722

RESUMEN

This study developed an advanced 850 nm centered distributed Bragg reflector (DBR) (broadband DBR) composed of nanomaterial-based multiple structures to improve the optical efficiency of an 850 nm near-infrared light-emitting diode (NIR-LED). A combined 850 nm centered broadband DBR was fabricated by growing an 800 nm centered ten-pair DBR on a 900 nm centered ten-pair DBR (denoted as a combined DBR). The combined DBR exhibited a slightly wider peak band than conventional DBRs. Furthermore, the peak band width of the combined DBR significantly increased upon using a reflective AlAs buffer layer that reduced the overlapped reflection. The output power (20.5 mW) of NIR-LED chips using the combined DBR with an AlAs buffer layer exceeded that of a conventional 850 nm centered DBR (14.5 mW) by more than 40%. Results indicated that combining the optical conditions of wavelengths and the AlAs buffer layer effectively strengthened the broadband effect of the DBR and increased the optical efficiency of the 850 nm NIR-LED.

6.
ACS Appl Mater Interfaces ; 16(7): 9414-9427, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334708

RESUMEN

Owing to their superior stability compared to those of conventional molecular dyes, as well as their high UV-visible absorption capacity, which can be tuned to cover the majority of the solar spectrum through size adjustment, quantum dot (QD)/TiO2 composites are being actively investigated as photosensitizing components for diverse solar energy conversion systems. However, the conversion efficiencies and durabilities of QD/TiO2-based solar cells and photocatalytic systems are still inferior to those of conventional systems that employ organic/inorganic components as photosensitizers. This is because of the poor adsorption of QDs onto the TiO2 surface, resulting in insufficient interfacial interactions between the two. The mechanism underlying QD adsorption on the TiO2 surface and its relationship to the photosensitization process remain unclear. In this study, we established that the surface characteristics of the TiO2 semiconductor and the QDs (i.e., surface defects of the metal oxide and the surface structure of the QD core) directly affect the QD adsorption capacity by TiO2 and the interfacial interactions between the QDs and TiO2, which relates to the photosensitization process from the photoexcited QDs to TiO2 (QD* → TiO2). The interfacial interaction between the QDs and TiO2 is maximized when the shape/thickness-modulated triangular QDs are composited with defect-rich anatase TiO2. Comprehensive investigations through photodynamic analyses and surface evaluation using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and photocatalysis experiments collectively validate that tuning the surface properties of QDs and modulating the TiO2 defect concentration can synergistically amplify the interfacial interaction between the QDs and TiO2. This augmentation markedly improved the efficiency of photoinduced electron transfer from the photoexcited QDs to TiO2, resulting in significantly increased photocatalytic activity of the QD/TiO2 composite. This study provides the first in-depth characterization of the physical adhesion of QDs dispersed on a heterogeneous metal-oxide surface. Furthermore, the prepared QD/TiO2 composite exhibits exceptional adsorption stability, resisting QD detachment from the TiO2 surface over a wide pH range (pH = 2-12) in aqueous media as well as in nonaqueous solvents during two months of immersion. These findings can aid the development of practical QD-sensitized solar energy conversion systems that require the long-term stability of the photosensitizing unit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA