Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Complement Altern Med ; 16(1): 288, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27527352

RESUMEN

BACKGROUND: Recent studies report that inflammatory diseases of the large intestine are associated with colorectal cancer. Geijigajakyak Decoction (GJD) has antispasmodic and anti-inflammatory effects on the gastrointestinal tract. Thus, in light of the connection between chronic bowel inflammation and colorectal cancer (CRC), we asked whether GJD inhibits colorectal tumorigenesis. METHODS: The effects of GJD on the viability and proliferation of CRC cells were evaluated using MTT and BrdU assays, respectively. The motility of CRC cells was examined by a Transwell migration/invasion assay and immunoblot analysis was used to examine the signaling pathways associated with migration. A syngeneic Balb/c mice allograft model, in which CT26 cells were injected into the dorsum, was used to evaluate the anti-tumor effects of GJD in vivo. RESULTS: GJD had no cytotoxic effects against HCT116 CRC cells, although it did inhibit their proliferation. GJD inhibited the migration of HCT116 cells, and suppressed the invasion of HCT116, Caco2, and CSC221 CRC cells. In addition, GJD downregulated the expression of p-JNK and p-p38 MAPK, which are downstream signaling molecules associated with invasiveness. Furthermore, oral administration of GJD (333 mg/kg, twice a day) inhibited tumor growth in a mouse xenograft model. CONCLUSIONS: GJD inhibited the motility of human CRC cells and suppressed tumorigenesis in a mouse model. These results suggest that GJD warrants further study as a potential adjuvant anti-cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Medicamentos Herbarios Chinos/farmacología , Animales , Células HCT116 , Humanos , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Pol J Microbiol ; 72(3): 307-317, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725893

RESUMEN

The prokaryotic microalga Limnothrix redekei KNUA012 isolated from a freshwater bloom sample from Lake Hapcheon, Hapcheon-gun, South Korea, was investigated for its potential as a biofuel feedstock. Microalgae produce straight-chain alkanes/alkenes from acyl carrier protein-linked fatty acyls via aldehyde decarbonylase (AD; EC 1.2.1.3), which can convert aldehyde intermediates into various biofuel precursors, such as alkanes and free fatty acids. In L. redekei KNUA012, long-chain ADs can convert fatty aldehyde intermediates into alkanes. After heterologous AD expression in Escherichia coli (pET28-AD), we identified an AD in L. redekei KNUA012 that can synthesize various alkanes, such as pentadecane (C15H32), 8-heptadecene (C17H34), and heptadecane (C17H36). These alkanes can be directly used as fuels without transesterification. Biodiesel constituents including dodecanoic acid (C13H26O2), tetradecanoic acid (C15H30O2), 9-hexa decenoic acid (C17H32O2), palmitoleic acid (C17H32O2), hexadecanoic acid (C17H34O2), 9-octadecenoic acid (C19H36O2), and octadecanoic acid (C19H38O2) are produced by L. redekei KNUA012 as the major fatty acids. Our findings suggest that Korean domestic L. redekei KNUA012 is a promising resource for microalgae-based biofuels and biofuel feedstock.


Asunto(s)
Microalgas , Biocombustibles , Alcanos , Escherichia coli/genética
3.
Front Plant Sci ; 11: 231, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194605

RESUMEN

An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl ß-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress.

4.
Food Res Int ; 105: 492-498, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29433240

RESUMEN

GC-MS datasets coupled with multivariate statistical analysis were used to investigate metabolic changes in Kimchi during fermentation and metabolic differences in Kimchi added with various amounts (0, 1.25, 2.5, and 5%) of salts. PCA score plot obtained after 1day of fermentation were clearly distinguishable by different salinity groups, implying that early fermentation speed varied according to Kimchi salinity. PLS-DA score plot from data obtained on the 50th day of fermentation also showed a clear separation, indicating metabolites of Kimchi were different according to salinity. Concentrations of lactic acid, acetic acid, and xylitol were the highest in Kimchi with 5% salinity while concentration of fumaric acid was the highest in Kimchi with 0% salinity. Rarefaction curves showed that numbers of operational taxonomic units (OTUs) in Kimchi with 5% salinity were higher than those in Kimchi with 0% salinity, implying that Kimchi with 5% salinity had more bacterial diversities. This study highlights the applicability of GC-MS based metabolomics for evaluating fermentative characteristics of Kimchi with different salinities.


Asunto(s)
Brassica/microbiología , Fermentación , Alimentos Fermentados/análisis , Manipulación de Alimentos/métodos , Cromatografía de Gases y Espectrometría de Masas , Metabolómica/métodos , Cloruro de Sodio/química , Análisis de Componente Principal , Salinidad , Factores de Tiempo
5.
J Ginseng Res ; 42(1): 57-67, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29348723

RESUMEN

BACKGROUND: Ginseng contains many small metabolites such as amino acids, fatty acids, carbohydrates, and ginsenosides. However, little is known about the relationships between microorganisms and metabolites during the entire ginseng fermentation process. We investigated metabolic changes during ginseng fermentation according to the inoculation of food-compatible microorganisms. METHODS: Gas chromatography mass spectrometry (GC-MS) datasets coupled with the multivariate statistical method for the purpose of latent-information extraction and sample classification were used for the evaluation of ginseng fermentation. Four different starter cultures (Saccharomyces bayanus, Bacillus subtilis, Lactobacillus plantarum, and Leuconostoc mesenteroide) were used for the ginseng extract fermentation. RESULTS: The principal component analysis score plot and heat map showed a clear separation between ginseng extracts fermented with S. bayanus and other strains. The highest levels of fructose, maltose, and galactose in the ginseng extracts were found in ginseng extracts fermented with B. subtilis. The levels of succinic acid and malic acid in the ginseng extract fermented with S. bayanus as well as the levels of lactic acid, malonic acid, and hydroxypruvic acid in the ginseng extract fermented with lactic acid bacteria (L. plantarum and L. mesenteroide) were the highest. In the results of taste features analysis using an electronic tongue, the ginseng extracts fermented with lactic acid bacteria were significantly distinguished from other groups by a high index of sour taste probably due to high lactic acid contents. CONCLUSION: These results suggest that a metabolomics approach based on GC-MS can be a useful tool to understand ginseng fermentation and evaluate the fermentative characteristics of starter cultures.

6.
Food Sci Biotechnol ; 25(6): 1657-1664, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-30263459

RESUMEN

A GC-MS based metabolomic study was performed to understand metabolic changes during sausage fermentation and to investigate how the incorporation of pineapple affects the metabolic profiles of fermented sausages. Principal component analysis models showed clear metabolic differences among the fermented sausages according to the fermentation periods and the pineapple addition. Increased amounts of amino acids and organic acids except for citric acid, along with decreased levels of sugars were observed after fermentation. Higher levels of sugars and citric acid in the pineapple supplemented sausages dramatically decreased during the early stage of fermentation. The contents of lactic acid, phosphoric acid, succinic acid, ribonic acid, valine, leucine, isoleucine, glycine, threonine, glutamic acid, glucose, and sucrose were significantly increased in the 2% pineapple addition sausages. GC-MS and PCA analytical methods provide a new approach to understand of the metabolic changes in fermented sausages during fermentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA