Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur Heart J ; 39(23): 2158-2167, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29905812

RESUMEN

Aim: Rheumatoid arthritis (RA) is associated with an approximately two-fold elevated risk of cardiovascular (CV)-related mortality. Patients with RA present with systemic inflammation including raised circulating myeloid cells, but fail to display traditional CV risk-factors, particularly dyslipidaemia. We aimed to explore if increased circulating myeloid cells is associated with impaired atherosclerotic lesion regression or altered progression in RA. Methods and results: Using flow cytometry, we noted prominent monocytosis, neutrophilia, and thrombocytosis in two mouse models of RA. This was due to enhanced proliferation of the haematopoietic stem and progenitor cells (HSPCs) in the bone marrow and the spleen. HSPCs expansion was associated with an increase in the cholesterol content, due to a down-regulation of cholesterol efflux genes, Apoe, Abca1, and Abcg1. The HSPCs also had enhanced expression of key myeloid promoting growth factor receptors. Systemic inflammation was found to cause defective cellular cholesterol metabolism. Increased myeloid cells in mice with RA were associated with a significant impairment in lesion regression, even though cholesterol levels were equivalent to non-arthritic mice. Lesions from arthritic mice exhibited a less stable phenotype as demonstrated by increased immune cell infiltration, lipid accumulation, and decreased collagen formation. In a progression model, we noted monocytosis, enhanced monocytes recruitment to lesions, and increased plaque macrophages. This was reversed with administration of reconstituted high-density lipoprotein (rHDL). Furthermore, RA patients have expanded CD16+ monocyte subsets and a down-regulation of ABCA1 and ABCG1. Conclusion: Rheumatoid arthritis impairs atherosclerotic regression and alters progression, which is associated with an expansion of myeloid cells and disturbed cellular cholesterol handling, independent of plasma cholesterol levels. Infusion of rHDL prevented enhanced myelopoiesis and monocyte entry into lesions. Targeting cellular cholesterol defects in people with RA, even if plasma cholesterol is within the normal range, may limit vascular disease.


Asunto(s)
Artritis Reumatoide/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Células Madre Hematopoyéticas/metabolismo , Monocitos/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Adulto , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Artritis Reumatoide/inmunología , Aterosclerosis/genética , Aterosclerosis/inmunología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Hematopoyesis Extramedular/inmunología , Humanos , Leucocitosis , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Monocitos/inmunología , Mielopoyesis/inmunología , Neutrófilos , ARN Mensajero/metabolismo , Trombocitosis
2.
Biomed Pharmacother ; 158: 114211, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36916437

RESUMEN

Methylglyoxal (MGO) is a reactive glucose metabolite linked to diabetic cardiovascular disease (CVD). MGO levels surge during intermittent hyperglycemia. We hypothesize that these MGO spikes contribute to atherosclerosis, and that pyridoxamine as a MGO quencher prevents this injury. To study this, we intravenously injected normoglycemic 8-week old male C57Bl6 ApoE-/- mice with normal saline (NS, n = 10) or 25 µg MGO for 10 consecutive weeks (MGOiv, n = 11) with or without 1 g/L pyridoxamine (MGOiv+PD, n = 11) in the drinking water. We measured circulating immune cells by flow cytometry. We quantified aortic arch lesion area in aortic roots after Sudan-black staining. We quantified the expression of inflammatory genes in the aorta by qPCR. Intermittent MGO spikes weekly increased atherosclerotic burden in the arch 1.8-fold (NS: 0.9 ± 0.1 vs 1.6 ± 0.2 %), and this was prevented by pyridoxamine (0.8 ± 0.1 %). MGOiv spikes increased circulating neutrophils and monocytes (2-fold relative to NS) and the expression of ICAM (3-fold), RAGE (5-fold), S100A9 (2-fold) and MCP1 (2-fold). All these changes were attenuated by pyridoxamine. This study suggests that MGO spikes damages the vasculature independently of plasma glucose levels. Pyridoxamine and potentially other approaches to reduce MGO may prevent excess cardiovascular risk in diabetes.


Asunto(s)
Aorta Torácica , Aterosclerosis , Ratones , Masculino , Animales , Aorta Torácica/metabolismo , Piridoxamina/farmacología , Piruvaldehído/metabolismo , Óxido de Magnesio , Aterosclerosis/prevención & control , Apolipoproteínas E
3.
Clin Transl Immunology ; 12(4): e1446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091327

RESUMEN

Objectives: The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis. Methods: Ldlr -/- mice were fed a western-type diet for 14 weeks to initiate atherogenesis, then switched to a chow diet to induce lesion regression and divided into three groups; (1) control, (2) K/BxN serum transfer inflammatory arthritis (K/BxN) or (3) K/BxN arthritis and LXR agonist T0901317 daily for 2 weeks. Results: LXR activation during murine inflammatory arthritis completely restored atherosclerotic lesion regression in arthritic mice, evidenced by reduced lesion size, macrophage abundance and lipid content. Mechanistically, serum from arthritic mice promoted foam cell formation, demonstrated by increased cellular lipid accumulation in macrophages and paralleled by a reduction in mRNA of the cholesterol efflux transporters Abca1, Abcg1 and Apoe. T0901317 reduced lipid loading and increased Abca1 and Abcg1 expression in macrophages exposed to arthritic serum and increased ABCA1 levels in atherosclerotic lesions of arthritic mice. Moreover, arthritic clinical score was also attenuated with T0901317. Conclusion: Taken together, we show that the LXR agonist T0901317 rescues impaired atherosclerotic lesion regression in murine arthritis because of enhanced cholesterol efflux transporter expression and reduced foam cell development in atherosclerotic lesions.

4.
Clin Transl Immunology ; 9(11): e1206, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204425

RESUMEN

OBJECTIVES: Rheumatoid arthritis (RA), an inflammatory joint disorder, independently increases the risk of cardiovascular disease (CVD). IL-1ß contributes to both RA and CVD. We hypothesised that inhibiting IL-1 signalling with the IL-1R antagonist, anakinra, would dampen inflammation and promote resolution of atherosclerosis in arthritic mice. METHODS: Low-density lipoprotein receptor (Ldlr)-deficient mice were fed a Western-type diet for 14 weeks to develop atherosclerotic plaques. Mice were then switched to a chow diet, promoting lesion regression, and randomised to a control group or into groups where arthritis was induced by passive transfer of K/BxN arthritogenic serum. The arthritic mice were further randomised to vehicle or anakinra. RESULTS: Arthritis impaired atherosclerotic lesion regression when cholesterol was lowered. This was associated with a higher burden of plaque macrophages, likely due to monocytosis, driven by myelopoiesis in the bone marrow and spleen. Interestingly, delayed intervention with anakinra had no effect on arthritis in these mice. However, a significant improvement in atherosclerotic plaque remodelling to a more stable phenotype was observed. This was associated with fewer circulating monocytes, caused by a reduction in splenic extramedullary myelopoiesis. CONCLUSION: We show that inhibiting IL-1 signalling in arthritic mice with pre-existing atherosclerosis promotes lesion remodelling to a more stable phenotype, that is less likely to rupture and cause ischemic events such as myocardial infarction. This suggests that IL-1R antagonism may suppress CVD complications in patients with RA. Furthermore, inhibiting IL-1ß signalling in other patients with inflammatory diseases that also predispose to CVD may also benefit from anti-IL-1 therapy.

5.
Cardiovasc Res ; 115(2): 277-291, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590405

RESUMEN

Haematopoiesis, the process of blood production, can be altered during the initiation or progression of many diseases. Cardiovascular disease (CVD) has been shown to be heavily influenced by changes to the haematopoietic system, including the types and abundance of immune cells produced. It is now well established that innate immune cells are increased in people with CVD, and the mechanisms contributing to this can be vastly different depending on the risk factors or comorbidities present. Many of these changes begin at the level of the haematopoietic stem and progenitor cells (HSPCs) that reside in the bone marrow (BM). In general, the HSPCs and downstream myeloid progenitors are expanded via increased proliferation in the setting of atherosclerotic CVD. However, HSPCs can also be encouraged to leave the BM and colonise extramedullary sites (i.e. the spleen). Within the BM, HSPCs reside in specialized microenvironments, often referred to as a niche. To date in depth studies assessing the damage or dysregulation that occurs in the BM niche in varying CVDs are scarce. In this review, we provide a general overview of the complex components and interactions within the BM niche and how they influence the function of HSPCs. Additionally, we discuss the main findings regarding changes in the HSPC niche that influence the progression of CVD. We hypothesize that understanding the influence of the BM niche in CVD will aid in delineating new pathways for therapeutic interventions.


Asunto(s)
Aterosclerosis/metabolismo , Sistema Cardiovascular/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre , Animales , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Sistema Cardiovascular/patología , Sistema Cardiovascular/fisiopatología , Progresión de la Enfermedad , Células Madre Hematopoyéticas/patología , Humanos , Fenotipo , Placa Aterosclerótica , Transducción de Señal
6.
Front Pharmacol ; 10: 666, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249530

RESUMEN

Atherosclerotic cardiovascular disease (CVD) is a lipid-driven chronic inflammatory disease, in which macrophages are responsible for taking up these lipids and driving disease progression. Over the years, we and others have uncovered key pathways that regulate macrophage number/function and identified how metabolic disorders such as diabetes and obesity, which are common risk factors for CVD, exacerbate these pathways. This ultimately accelerates the progression of atherosclerosis and hinders atherosclerotic regression. In this review, we discuss the different types of macrophages, from monocyte-derived macrophages, local macrophage proliferation, to macrophage-like vascular smooth muscle cells, that contribute to atherosclerosis as well as myeloid-derived suppressor cells that may have anti-atherogenic effects. We will also discuss how diabetes and obesity influence plaque macrophage accumulation and monocyte production (myelopoiesis) to promote atherogenesis as well as an exciting therapeutic target, S100A8/A9, which mediates myelopoiesis in response to both diabetes and obesity, shown to be effective in reducing atherosclerosis in pre-clinical models of diabetes.

7.
Atherosclerosis ; 271: 102-110, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29482037

RESUMEN

The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity.


Asunto(s)
Tejido Adiposo/inmunología , Linfocitos B/inmunología , Células Dendríticas/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiopatología , Adiposidad , Animales , Linfocitos B/metabolismo , Comunicación Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Fenotipo , Transducción de Señal
8.
Front Immunol ; 8: 1311, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085369

RESUMEN

The realization that an intricate link exists between the metabolic state of immune cells and the nature of the elicited immune responses has brought a dramatic evolution to the field of immunology. We will focus on how metabolic reprogramming through the use of glycolysis and fatty-acid oxidation (sugar or fat) regulates the capacity of immune cells to mount robust and effective immune responses. We will also discuss how fine-tuning sugar and fat metabolism may be exploited as a novel immunotherapeutic strategy to fight viral infections or improve vaccine efficacy.

9.
Thromb Haemost ; 115(4): 762-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26676845

RESUMEN

Recruitment of monocytes in atherosclerosis is dependent upon increased levels of plasma lipoproteins which accumulate in the blood vessel wall. The extracellular milieu can influence the phenotype of monocyte subsets (classical: CD14++CD16-, intermediate: CD14+CD16+ and non-classical: CD14dimCD16++) and macrophages (M1 or M2) and consequently the initiation, progression and/or regression of atherosclerosis. However, it is not known what effect lipoproteins, in particular native low-density lipoproteins (nLDL), have on the polarisation of monocyte-derived macrophages. Monocytes were differentiated into macrophages in the presence of nLDL. nLDL increased gene expression of the inflammatory cytokines TNFα and IL-6 in macrophages polarised towards the M1 phenotype while decreasing the M2 surface markers, CD206 and CD200R and the anti-inflammatory cytokines TGFß and IL-10. Compared to the classical and intermediate subsets, the non-classical subset-derived macrophages had a reduced ability to respond to M1 stimuli (LPS and IFNγ). nLDL enhanced the TNFα and IL-6 gene expression in macrophages from all monocyte subsets, indicating an inflammatory effect of nLDL. Further, the classical and intermediate subsets both responded to M2 stimuli (IL-4) with upregulation of TGFß and SR-B1 mRNA; an effect, which was reduced by nLDL. In contrast, the non-classical subset failed to respond to IL-4 or nLDL, suggesting it may be unable to polarise into M2 macrophages. Our data suggests that monocyte interaction with nLDL significantly affects macrophage polarisation and that this interaction appears to be subset dependent.


Asunto(s)
Aterosclerosis/metabolismo , Diferenciación Celular , Lipoproteínas LDL/metabolismo , Macrófagos/fisiología , Monocitos/fisiología , Antígenos CD/metabolismo , Aterosclerosis/patología , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Fenotipo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA