Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diabetes ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905153

RESUMEN

Despite advances in the treatment of atherosclerotic cardiovascular disease, it remains the leading cause of death in patients with diabetes. Even when risk factors are mitigated, the disease progresses, and thus newer targets need to be identified that directly inhibit the underlying pathobiology of atherosclerosis in diabetes. A single cell sequencing approach was utilised to distinguish the proatherogenic transcriptional profile in aortic cells in diabetes using a streptozotocin induced-diabetic Apoe-/- mouse model. Human carotid endarterectomy specimens from individuals with and without diabetes were also evaluated via immunohistochemical analysis. Further mechanistic studies were performed in human aortic endothelial cells and human THP-1 derived macrophages. We then performed a preclinical study using an AP-1 inhibitor in a diabetic Apoe-/- mouse model. Single cell RNA sequencing analysis identified the AP-1 complex as a novel target in diabetes-associated atherosclerosis. AP-1 levels were elevated in carotid endarterectomy specimens from diabetic when compared to non-diabetic individuals. AP-1 was validated as a mechanosensitive transcription factor via immunofluorescence staining for regional heterogeneity of endothelial cells of the aortic region exposed to turbulent blood flow and by performing microfluidics experiments in HAECs. AP-1 inhibition with T-5224 blunted endothelial cell activation as assessed by a monocyte adhesion assay and expression of genes relevant to endothelial function. Furthermore, AP-1 inhibition attenuated foam cell formation. Critically, treatment with T-5224 attenuated atherosclerosis development in diabetic Apoe-/- mice. This study has identified the AP-1 complex as a novel target, inhibition of which treats the underlying pathobiology of atherosclerosis in diabetes.

2.
J Clin Invest ; 129(10): 4239-4244, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483287

RESUMEN

Macrophage activation in response to LPS is coupled to profound metabolic changes, typified by accumulation of the TCA cycle intermediates citrate, itaconate, and succinate. We have identified that endogenous type I IFN controls the cellular citrate/α-ketoglutarate ratio and inhibits expression and activity of isocitrate dehydrogenase (IDH); and, via 13C-labeling studies, demonstrated that autocrine type I IFN controls carbon flow through IDH in LPS-activated macrophages. We also found that type I IFN-driven IL-10 contributes to inhibition of IDH activity and itaconate synthesis in LPS-stimulated macrophages. Our findings have identified the autocrine type I IFN pathway as being responsible for the inhibition of IDH in LPS-stimulated macrophages.


Asunto(s)
Interferón Tipo I/metabolismo , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Comunicación Autocrina , Ciclo del Ácido Cítrico , Humanos , Interleucina-10/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Succinatos/metabolismo
3.
J Clin Invest ; 127(6): 2133-2147, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28504650

RESUMEN

Platelets play a critical role in atherogenesis and thrombosis-mediated myocardial ischemia, processes that are accelerated in diabetes. Whether hyperglycemia promotes platelet production and whether enhanced platelet production contributes to enhanced atherothrombosis remains unknown. Here we found that in response to hyperglycemia, neutrophil-derived S100 calcium-binding proteins A8/A9 (S100A8/A9) interact with the receptor for advanced glycation end products (RAGE) on hepatic Kupffer cells, resulting in increased production of IL-6, a pleiotropic cytokine that is implicated in inflammatory thrombocytosis. IL-6 acts on hepatocytes to enhance the production of thrombopoietin, which in turn interacts with its cognate receptor c-MPL on megakaryocytes and bone marrow progenitor cells to promote their expansion and proliferation, resulting in reticulated thrombocytosis. Lowering blood glucose using a sodium-glucose cotransporter 2 inhibitor (dapagliflozin), depleting neutrophils or Kupffer cells, or inhibiting S100A8/A9 binding to RAGE (using paquinimod), all reduced diabetes-induced thrombocytosis. Inhibiting S100A8/A9 also decreased atherogenesis in diabetic mice. Finally, we found that patients with type 2 diabetes have reticulated thrombocytosis that correlates with glycated hemoglobin as well as increased plasma S100A8/A9 levels. These studies provide insights into the mechanisms that regulate platelet production and may aid in the development of strategies to improve on current antiplatelet therapies and to reduce cardiovascular disease risk in diabetes.


Asunto(s)
Aterosclerosis/inmunología , Calgranulina A/fisiología , Calgranulina B/fisiología , Diabetes Mellitus Experimental/inmunología , Neutrófilos/metabolismo , Trombocitosis/inmunología , Animales , Aterosclerosis/metabolismo , Plaquetas/fisiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Trombocitosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA