Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 582(7813): 520-524, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32581378

RESUMEN

Fundamental studies of chemical reactions often consider the molecular dynamics along a reaction coordinate using a calculated or suggested potential energy surface1-5. But fully mapping such dynamics experimentally, by following all nuclear motions in a time-resolved manner-that is, the motions of wavepackets-is challenging and has not yet been realized even for the simple stereotypical bimolecular reaction6-8: A-B + C â†’ A + B-C. Here we track the trajectories of these vibrational wavepackets during photoinduced bond formation of the gold trimer complex [Au(CN)2-]3 in an aqueous monomer solution, using femtosecond X-ray liquidography9-12 with X-ray free-electron lasers13,14. In the complex, which forms when three monomers A, B and C cluster together through non-covalent interactions15,16, the distance between A and B is shorter than that between B and C. Tracking the wavepacket in three-dimensional nuclear coordinates reveals that within the first 60 femtoseconds after photoexcitation, a covalent bond forms between A and B to give A-B + C. The second covalent bond, between B and C, subsequently forms within 360 femtoseconds to give a linear and covalently bonded trimer complex A-B-C. The trimer exhibits harmonic vibrations that we map and unambiguously assign to specific normal modes using only the experimental data. In principle, more intense X-rays could visualize the motion not only of highly scattering atoms such as gold but also of lighter atoms such as carbon and nitrogen, which will open the door to the direct tracking of the atomic motions involved in many chemical reactions.

2.
Radiology ; 310(2): e231406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38411517

RESUMEN

Background Chimeric antigen receptor (CAR) T cells are a promising cancer therapy; however, reliable and repeatable methods for tracking and monitoring CAR T cells in vivo remain underexplored. Purpose To investigate direct and indirect imaging strategies for tracking the biodistribution of CAR T cells and monitoring their therapeutic effect in target tumors. Materials and Methods CAR T cells co-expressing a tumor-targeting gene (anti-CD19 CAR) and a human somatostatin receptor subtype 2 (hSSTr2) reporter gene were generated from human peripheral blood mononuclear cells. After direct labeling with zirconium 89 (89Zr)-p-isothiocyanatobenzyl-desferrioxamine (DFO), CAR T cells were intravenously injected into immunodeficient mice with a CD19-positive and CD19-negative human tumor xenograft on the left and right flank, respectively. PET/MRI was used for direct in vivo imaging of 89Zr-DFO-labeled CAR T cells on days 0, 1, 3, and 7 and for indirect cell imaging with the radiolabeled somatostatin receptor-targeted ligand gallium 68 (68Ga)-DOTA-Tyr3-octreotide (DOTATOC) on days 6, 9, and 13. On day 13, mice were euthanized, and tissues and tumors were excised. Results The 89Zr-DFO-labeled CAR T cells were observed on PET/MRI scans in the liver and lungs of mice (n = 4) at all time points assessed. However, they were not visualized in CD19-positive or CD19-negative tumors, even on day 7. Serial 68Ga-DOTATOC PET/MRI showed CAR T cell accumulation in CD19-positive tumors but not in CD19-negative tumors from days 6 to 13. Notably, 68Ga-DOTATOC accumulation in CD19-positive tumors was highest on day 9 (mean percentage injected dose [%ID], 3.7% ± 1.0 [SD]) and decreased on day 13 (mean %ID, 2.6% ± 0.7) in parallel with a decrease in tumor volume (day 9: mean, 195 mm3 ± 27; day 13: mean, 127 mm3 ± 43) in the group with tumor growth inhibition. Enhanced immunohistochemistry staining of cluster of differentiation 3 (CD3) and hSSTr2 was also observed in excised CD19-positive tumor tissues. Conclusion Direct and indirect cell imaging with PET/MRI enabled in vivo tracking and monitoring of CAR T cells in an animal model. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Bulte in this issue.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Xenoinjertos , Radioisótopos de Galio , Receptores de Somatostatina , Leucocitos Mononucleares , Distribución Tisular , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética , Modelos Animales de Enfermedad , Linfocitos T
3.
Inflamm Res ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879731

RESUMEN

Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder characterized by joint destruction due to synovial hypertrophy and the infiltration of inflammatory cells. Despite substantial progress in RA treatment, challenges persist, including suboptimal treatment responses and adverse effects associated with current therapies. This study investigates the anti-rheumatic capabilities of the newly identified multi-protein kinase inhibitor, KMU-11342, aiming to develop innovative agents targeting RA. In this study, we synthesized the novel multi-protein kinase inhibitor KMU-11342, based on indolin-2-one. We assessed its cardiac electrophysiological safety using the Langendorff system in rat hearts and evaluated its toxicity in zebrafish in vivo. Additionally, we examined the anti-rheumatic effects of KMU-11342 on human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), THP-1 cells, and osteoclastogenesis in RAW264.7 cells. KMU-11342 demonstrated the ability to inhibit LPS-induced chemokine inhibition and the upregulation of pro-inflammatory cytokines, cyclooxygenase-2, inducible nitric oxide synthase, p-IKKα/ß, p-NF-κB p65, and the nuclear translocation of NF-κB p65 in RA-FLS. It effectively suppressed the upregulation of NLR family pyrin domain containing 3 (NLRP3) and caspase-1 cleavage. Furthermore, KMU-11342 hindered the activation of osteoclast differentiation factors such as RANKL-induced TRAP, cathepsin K, NFATc-1, and c-Fos in RAW264.7 cells. KMU-11342 mitigates LPS-mediated inflammatory responses in THP-1 cells by inhibiting the activation of NLRP3 inflammasome. Notably, KMU-11342 exhibited minimal cytotoxicity in vivo and electrophysiological cardiotoxicity ex vivo. Consequently, KMU-11342 holds promise for development as a therapeutic agent in RA treatment.

4.
Mol Cell ; 62(3): 443-452, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27151441

RESUMEN

S6K1 has been implicated in a number of key metabolic responses, which contribute to obesity. Critical among these is the control of a transcriptional program required for the commitment of mesenchymal stem cells to the adipocytic lineage. However, in contrast to its role in the cytosol, the functions and targets of nuclear S6K1 are unknown. Here, we show that adipogenic stimuli trigger nuclear translocation of S6K1, leading to H2BS36 phosphorylation and recruitment of EZH2 to H3, which mediates H3K27 trimethylation. This blocks Wnt gene expression, inducing the upregulation of PPARγ and Cebpa and driving increased adipogenesis. Consistent with this finding, white adipose tissue from S6K1-deficient mice exhibits no detectable H2BS36 phosphorylation or H3K27 trimethylation, whereas both responses are highly elevated in obese humans or in mice fed a high-fat diet. These findings define an S6K1-dependent mechanism in early adipogenesis, contributing to the promotion of obesity.


Asunto(s)
Adipocitos/enzimología , Adipogénesis , Tejido Adiposo/enzimología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/metabolismo , Obesidad/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Tejido Adiposo/patología , Adiposidad , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética , Células HeLa , Histonas/genética , Humanos , Masculino , Metilación , Ratones , Obesidad/genética , Obesidad/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transcripción Genética , Transfección , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
5.
Nano Lett ; 23(8): 3334-3343, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37068052

RESUMEN

Obtaining the heterogeneous conformation of small proteins is important for understanding their biological role, but it is still challenging. Here, we developed a multi-tilt nanoparticle-aided cryo-electron microscopy sampling (MT-NACS) technique that enables the observation of heterogeneous conformations of small proteins and applied it to calmodulin. By imaging the proteins labeled by two gold nanoparticles at multiple tilt angles and analyzing the projected positions of the nanoparticles, the distributions of 3D interparticle distances were obtained. From the measured distance distributions, the conformational changes associated with Ca2+ binding and salt concentration were determined. MT-NACS was also used to track the structural change accompanied by the interaction between amyloid-beta and calmodulin, which has never been observed experimentally. This work offers an alternative platform for studying the functional flexibility of small proteins.


Asunto(s)
Calmodulina , Nanopartículas del Metal , Microscopía por Crioelectrón/métodos , Oro/química , Nanopartículas del Metal/química , Conformación Proteica
6.
Environ Monit Assess ; 196(6): 506, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702588

RESUMEN

Industrial cities are hotspots for many hazardous air pollutants (HAPs), which are detrimental to human health. We devised an identification method to determine priority HAP monitoring areas using a comprehensive approach involving monitoring, modeling, and demographics. The methodology to identify the priority HAP monitoring area consists of two parts: (1) mapping the spatial distribution of selected categories relevant to the target pollutant and (2) integrating the distribution maps of various categories and subsequent scoring. The identification method was applied in Ulsan, the largest industrial city in South Korea, to identify priority HAP monitoring areas. Four categories related to HAPs were used in the method: (1) concentrations of HAPs, (2) amount of HAP emissions, (3) the contribution of industrial activities, and (4) population density in the city. This method can be used to select priority HAP monitoring areas for intensive monitoring campaigns, cohort studies, and epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Sistemas de Información Geográfica , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , República de Corea , Contaminación del Aire/estadística & datos numéricos , Industrias , Humanos , Sustancias Peligrosas/análisis
7.
J Cell Physiol ; 238(9): 2076-2089, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37672477

RESUMEN

Vasomotion is the oscillation of vascular tone which gives rise to flow motion of blood into an organ. As is well known, spontaneous contractile organs such as heart, GI, and genitourinary tract produce rhythmic contraction. It imposes or removes pressure on their vessels alternatively for exchange of many substances. It was first described over 150 years ago, however the physiological mechanism and pathophysiological implications are not well understood. This study aimed to elucidate underlying mechanisms and physiological function of vasomotion in human arteries. Conventional contractile force measurement, immunohistochemistry, and Western blot analysis were employed to study human left gastric artery (HLGA) and uterine arteries (HUA). RESULTS: Circular muscle of HLGA and/or HUA produced sustained tonic contraction by high K+ (50 mM) which was blocked by 2 µM nifedipine. Stepwise stretch and high K+ produced nerve-independent spontaneous contraction (vasomotion) (around 45% of tested tissues). Vasomotion was also produced by application of BayK 8644, 5-HT, prostagrandins, oxytocin. It was blocked by nifedipine (2 µM) and blockers of intracellular Ca2+ stores. Inhibitors of Ca2+ -activated Cl- channels (DIDS and/or niflumic acid) and ATP-sensitive K+ (KATP ) channels inhibited vasomotion reversibly. Metabolic inhibition by sodium cyanide (NaCN) and several neuropeptides also regulated vasomotion in KATP channel-sensitive and -insensitive manner. Finally, we identified TMEM16A Ca2+ -activated Cl- channels and subunits of KATP channels (Kir 6.1/6.2 and sulfonylurea receptor 2B [SUR2B]), and c-Kit positivity by Western blot analysis. We conclude that vasomotion is sensitive to TMEM16A Ca2+ -activated Cl- channels and metabolic changes in human gastric and uterine arteries. Vasomotion might play an important role in the regulation of microcirculation dynamics even in pacemaker-related autonomic contractile organs in humans.


Asunto(s)
Arterias , Canales Iónicos , Contracción Isométrica , Humanos , Canales Iónicos/fisiología , Nifedipino/farmacología , Arteria Uterina , Arterias/fisiología
8.
Allergy ; 78(7): 1909-1921, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36847620

RESUMEN

BACKGROUND: Accumulating evidence suggests that the gut microbiome is associated with asthma. However, altered gut microbiome in adult asthma is not yet well established. We aimed to investigate the gut microbiome profiles of adult asthmatic patients with symptomatic eosinophilic inflammation. METHODS: The 16 s rRNA gene metagenomic analysis of feces in the symptomatic eosinophilic asthma group (EA, n = 28) was compared with the healthy control (HC, n = 18) and the chronic cough control (CC, n = 13). A correlation analysis between individual taxa and clinical markers was performed within the EA group. Changes in the gut microbiome were examined in patients with significant symptom improvement in the EA group. RESULTS: The relative abundances of Lachnospiraceae and Oscillospiraceae significantly decreased and Bacteroidetes increased in the EA group. Within EA group, Lachnospiraceae was negatively correlated with indicators of type 2 inflammation and lung function decline. Enterobacteriaceae and Prevotella was positively associated with type 2 inflammation and lung function decline, respectively. The abundance of predicted genes associated with amino acid metabolism and secondary bile acid biosynthesis was diminished in the EA group. These functional gene family alterations could be related to gut permeability, and the serum lipopolysaccharide concentration was actually high in the EA group. EA patients with symptom improvement after 1 month did not show a significant change in the gut microbiome. CONCLUSIONS: Symptomatic eosinophilic adult asthma patients showed altered the gut microbiome composition. Specifically, a decrease in commensal clostridia was observed, and a decrease in Lachnospiraceae was correlated with blood eosinophilia and lung function decline.


Asunto(s)
Asma , Microbioma Gastrointestinal , Eosinofilia Pulmonar , Humanos , Adulto , Asma/genética , Inflamación/genética , Metagenoma , ARN Ribosómico 16S/genética
9.
Proc Natl Acad Sci U S A ; 117(26): 14996-15005, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541047

RESUMEN

One of the most challenging tasks in biological science is to understand how a protein folds. In theoretical studies, the hypothesis adopting a funnel-like free-energy landscape has been recognized as a prominent scheme for explaining protein folding in views of both internal energy and conformational heterogeneity of a protein. Despite numerous experimental efforts, however, comprehensively studying protein folding with respect to its global conformational changes in conjunction with the heterogeneity has been elusive. Here we investigate the redox-coupled folding dynamics of equine heart cytochrome c (cyt-c) induced by external electron injection by using time-resolved X-ray solution scattering. A systematic kinetic analysis unveils a kinetic model for its folding with a stretched exponential behavior during the transition toward the folded state. With the aid of the ensemble optimization method combined with molecular dynamics simulations, we found that during the folding the heterogeneously populated ensemble of the unfolded state is converted to a narrowly populated ensemble of folded conformations. These observations obtained from the kinetic and the structural analyses of X-ray scattering data reveal that the folding dynamics of cyt-c accompanies many parallel pathways associated with the heterogeneously populated ensemble of unfolded conformations, resulting in the stretched exponential kinetics at room temperature. This finding provides direct evidence with a view to microscopic protein conformations that the cyt-c folding initiates from a highly heterogeneous unfolded state, passes through still diverse intermediate structures, and reaches structural homogeneity by arriving at the folded state.


Asunto(s)
Citocromos c/química , Animales , Caballos , Cinética , Simulación de Dinámica Molecular , Oxidación-Reducción , Pliegue de Proteína
10.
Cell Tissue Bank ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038782

RESUMEN

The absence of ears in children is a global problem. An implant made of costal cartilage is the standard procedure for ear reconstruction; however, side effects such as pneumothorax, loss of thoracic cage shape, and respiratory complications have been documented. Three-dimensional (3D) printing allows the generation of biocompatible scaffolds that mimic the shape, mechanical strength, and architecture of the native extracellular matrix necessary to promote new elastic cartilage formation. We report the potential use of a 3D-bioprinted poly-ε-caprolactone (3D-PCL) auricle-shaped framework seeded with remaining human microtia chondrocytes for the development of elastic cartilage for autologous microtia ear reconstruction. An in vivo assay of the neo-tissue formed revealed the generation of a 3D pinna-shaped neo-tissue, and confirmed the formation of elastic cartilage by the presence of type II collagen and elastin with histological features and a protein composition consistent with normal elastic cartilage. According to our results, a combination of 3D-PCL auricle frameworks and autologous microtia remnant tissue generates a suitable pinna structure for autologous ear reconstruction.

11.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138965

RESUMEN

Biological macromolecules, the fundamental building blocks of life, exhibit dynamic structures in their natural environment. Traditional structure determination techniques often oversimplify these multifarious conformational spectra by capturing only ensemble- and time-averaged molecular structures. Addressing this gap, in this work, we extend the application of the single-object scattering sampling (SOSS) method to diverse biological molecules, including RNAs and proteins. Our approach, referred to as "Bio-SOSS", leverages ultrashort X-ray pulses to capture instantaneous structures. In Bio-SOSS, we employ two gold nanoparticles (AuNPs) as labels, which provide strong contrast in the X-ray scattering signal, to ensure precise distance determinations between labeled sites. We generated hypothetical Bio-SOSS images for RNAs, proteins, and an RNA-protein complex, each labeled with two AuNPs at specified positions. Subsequently, to validate the accuracy of Bio-SOSS, we extracted distances between these nanoparticle labels from the images and compared them with the actual values used to generate the Bio-SOSS images. Specifically, for a representative RNA (1KXK), the standard deviation in distance discrepancies between molecular dynamics snapshots and Bio-SOSS retrievals was found to be optimally around 0.2 Å, typically within 1 Å under practical experimental conditions at state-of-the-art X-ray free-electron laser facilities. Furthermore, we conducted an in-depth analysis of how various experimental factors, such as AuNP size, X-ray properties, and detector geometry, influence the accuracy of Bio-SOSS. This comprehensive investigation highlights the practicality and potential of Bio-SOSS in accurately capturing the diverse conformation spectrum of biological macromolecules, paving the way for deeper insights into their dynamic natures.


Asunto(s)
Oro , Nanopartículas del Metal , Rayos X , Oro/química , Conformación Molecular , Proteínas/química , ARN
12.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761976

RESUMEN

The interaction between regulatory T (Treg) cells and self-reactive T cells is a crucial mechanism for maintaining immune tolerance. In this study, we investigated the cross-activation of Treg cells by self-antigens and its impact on self-reactive CD8+ T cell responses, with a focus on the P53 signaling pathway. We discovered that major histocompatibility complex (MHC) I-restricted self-peptides not only activated CD8+ T cells but also induced the delayed proliferation of Treg cells. Following HLA-A*0201-restricted Melan-A-specific (pMelan) CD8+ T cells, we observed the direct expansion of Treg cells and concurrent suppression of pMelan+CD8+ T cell proliferation upon stimulation with Melan-A peptide. Transcriptome analysis revealed no significant alterations in specific signaling pathways in pMelan+CD8+ T cells that were co-cultured with activated Treg cells. However, there was a noticeable upregulation of genes involved in P53 accumulation, a critical regulator of cell survival and apoptosis. Consistent with such observation, the blockade of P53 induced a continuous proliferation of pMelan+CD8+ T cells. The concurrent stimulation of Treg cells through self-reactive TCRs by self-antigens provides insights into the immune system's ability to control activated self-reactive CD8+ T cells as part of peripheral tolerance, highlighting the intricate interplay between Treg cells and CD8+ T cells and implicating therapeutic interventions in autoimmune diseases and cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos T Reguladores , Antígeno MART-1/metabolismo , Autoantígenos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Antígenos CD8/metabolismo
13.
Mater Des ; 2332023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37854951

RESUMEN

Bioinks for cell-based bioprinting face availability limitations. Furthermore, the bioink development process needs comprehensive printability assessment methods and a thorough understanding of rheological factors' influence on printing outcomes. To bridge this gap, our study aimed to investigate the relationship between rheological properties and printing outcomes. We developed a specialized bioink artifact specifically designed to improve the quantification of printability assessment. This bioink artifact adhered to established criteria from extrusion-based bioprinting approaches. Seven hydrogel-based bioinks were selected and tested using the bioink artifact and rheological measurement. Rheological analysis revealed that the high-performing bioinks exhibited notable characteristics such as high storage modulus, low tan(δ), high shear-thinning capabilities, high yield stress, and fast, near-complete recovery abilities. Although rheological data alone cannot fully explain printing outcomes, certain metrics like storage modulus and tan(δ) correlated well (R2 > 0.9) with specific printing outcomes, such as gap-spanning capability and turn accuracy. This study provides a comprehensive examination of bioink shape fidelity across a wide range of bioinks, rheological measures, and printing outcomes. The results highlight the importance of considering the holistic view of bioink's rheological properties and directly measuring printing outcomes. These findings underscore the need to enhance bioink availability and establish standardized methods for assessing printability.

14.
Small ; 18(36): e2202196, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35973946

RESUMEN

4D bioprinting techniques that facilitate formation of shape-changing scaffold-free cell condensates with prescribed geometries have yet been demonstrated. Here, a simple 4D bioprinting approach is presented that enables formation of a shape-morphing cell condensate-laden bilayer system. The strategy produces scaffold-free cell condensates which morph over time into predefined complex shapes. Cell condensate-laden bilayers with specific geometries are readily fabricated by bioprinting technologies. The bilayers have tunable deformability and microgel (MG) degradation, enabling controllable morphological transformations and on-demand liberation of deformed cell condensates. With this system, large cell condensate-laden constructs with various complex shapes are obtained. As a proof-of-concept study, the formation of the letter "C"- and helix-shaped robust cartilage-like tissues differentiated from human mesenchymal stem cells (hMSCs) is demonstrated. This system brings about a versatile 4D bioprinting platform idea that is anticipated to broaden and facilitate the applications of cell condensation-based 4D bioprinting.


Asunto(s)
Bioimpresión , Microgeles , Bioimpresión/métodos , Cartílago , Diferenciación Celular , Humanos , Hidrogeles , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
15.
Chem Rev ; 120(19): 10834-10886, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32815369

RESUMEN

Bioprinting researchers agree that "printability" is a key characteristic for bioink development, but neither the meaning of the term nor the best way to experimentally measure it has been established. Furthermore, little is known with respect to the underlying mechanisms which determine a bioink's printability. A thorough understanding of these mechanisms is key to the intentional design of new bioinks. For the purposes of this review, the domain of printability is defined as the bioink requirements which are unique to bioprinting and occur during the printing process. Within this domain, the different aspects of printability and the factors which influence them are reviewed. The extrudability, filament classification, shape fidelity, and printing accuracy of bioinks are examined in detail with respect to their rheological properties, chemical structure, and printing parameters. These relationships are discussed and areas where further research is needed, are identified. This review serves to aid the bioink development process, which will continue to play a major role in the successes and failures of bioprinting, tissue engineering, and regenerative medicine going forward.


Asunto(s)
Bioimpresión , Hidrogeles/química , Tinta , Impresión Tridimensional , Ingeniería de Tejidos , Humanos
16.
Chem Rev ; 120(19): 11056-11092, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32558555

RESUMEN

The field of tissue engineering and regenerative medicine has made numerous advances in recent years in the arena of fabricating multifunctional, three-dimensional (3D) tissue constructs. This can be attributed to novel approaches in the bioprinting of stem cells. There are expansive options in bioprinting technology that have become more refined and specialized over the years, and stem cells address many limitations in cell source, expansion, and development of bioengineered tissue constructs. While bioprinted stem cells present an opportunity to replicate physiological microenvironments with precision, the future of this practice relies heavily on the optimization of the cellular microenvironment. To fabricate tissue constructs that are useful in replicating physiological conditions in laboratory settings, or in preparation for transplantation to a living host, the microenvironment must mimic conditions that allow bioprinted stem cells to proliferate, differentiate, and migrate. The advances of bioprinting stem cells and directing cell fate have the potential to provide feasible and translatable approach to creating complex tissues and organs. This review will examine the methods through which bioprinted stem cells are differentiated into desired cell lineages through biochemical, biological, and biomechanical techniques.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Células Madre/citología , Ingeniería de Tejidos , Microambiente Celular , Humanos
18.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743287

RESUMEN

Oxygen-generating materials have been used in several tissue engineering applications; however, their application as in situ oxygen supply within bioprinted constructs has not been deeply studied. In this study, two oxygen-generating materials, sodium percarbonate (SPO) and calcium peroxide (CPO), were studied for their oxygen release kinetics under a 0.1% O2 condition. In addition, a novel cell-culture-insert setup was used to evaluate the effects of SPO and CPO on the viability of skeletal muscle cells under the same hypoxic condition. Results showed that SPO had a burst oxygen release, while CPO had a more stable oxygen release than SPO. Both SPO and CPO reduced cell viability when used alone. The addition of catalase in SPO and CPO increased the oxygen release rate, as well as improving the viability of skeletal muscle cells; however, CPO still showed cytotoxicity with catalase. Additionally, the utilization of 1 mg/mL SPO and 20 U catalase in a hydrogel for bioprinting significantly enhanced the cell viability under the hypoxic condition. Moreover, bioprinted muscle constructs could further differentiate into elongated myotubes when transferring back to the normoxic condition. This work provides an excellent in vitro model to test oxygen-generating materials and further discover their applications in bioprinting, where they represent promising avenues to overcome the challenge of oxygen shortage in bioprinted constructs before their complete vascularization.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Carbonatos , Catalasa , Humanos , Hipoxia , Cinética , Oxígeno , Peróxidos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
19.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499089

RESUMEN

Non-obstructive azoospermia is a major clinical issue associated with male infertility that remains to be addressed. Although neogenin is reportedly abundantly expressed in the testis, its role in mammalian spermatogenesis is unknown. We systematically investigated the role of neogenin during spermatogenesis by performing loss-of-function studies. Testis-specific neogenin conditional knock-out (cKO) mice were generated using CRISPR/Cas9 and neogenin-targeting guide RNAs. We analyzed the expression profiles of germ cell factors by RT-PCR and Western blotting. Neogenin localized mainly to spermatogonia in seminiferous tubules of mouse testes. RT-PCR and Western blot analyses further demonstrated that neogenin expression varied during spermatogenesis and was dramatically increased at postnatal day 12-25 during the pubertal stage. In neogenin-cKO mouse testes, the ratio of primary and secondary spermatocytes was significantly decreased compared with the control, while the number of apoptotic testicular cells was significantly increased. Taken together, these results suggest that neogenin plays a pivotal role in the maintenance and proliferation of spermatogonia during the early stage of spermatogenesis in mice.


Asunto(s)
Espermatogénesis , Espermatogonias , Humanos , Masculino , Ratones , Animales , Regulación hacia Abajo , Espermatogonias/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Diferenciación Celular/genética , Ratones Noqueados , Proliferación Celular , Mamíferos
20.
Adv Funct Mater ; 31(24)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34335134

RESUMEN

Developing and healing tissues begin as a cellular condensation. Spatiotemporal changes in tissue geometry, transformations in the spatial distribution of the cells and extracellular matrix, are essential for its evolution into a functional tissue. 4D materials, 3D materials capable of geometric changes, may have the potential to recreate the aforementioned biological phenomenon. However, most reported 4D materials are non-degradable and/or not biocompatible, which limits their application in regenerative medicine, and to date there are no systems controlling the geometry of high density cellular condensations and differentiation. Here, we describe 4D high cell density tissues based on shape-changing hydrogels. By sequential photocrosslinking of oxidized and methacrylated alginate (OMA) and methacrylated gelatin (GelMA), bi-layered hydrogels presenting controllable geometric changes without any external stimuli were fabricated. Fibroblasts and human adipose-derived stem cells (ASCs) were incorporated at concentrations up to 1.0 × 108 cells/mL to the 4D constructs, and controllable shape changes were achieved in concert with ASCs differentiated down chondrogenic and osteogenic lineages. Bioprinting of the high density cell-laden OMA and GelMA permitted the formation of more complex constructs with defined 4D geometric changes, which may further expand the promise of this approach in regenerative medicine applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA