Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Sci Food Agric ; 103(7): 3701-3713, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36325913

RESUMEN

BACKGROUND: Antioxidant and anti-inflammatory effects of natural products on skin cells have been proved to be effective in improving skin damage. Capsicum species contain capsaicinoids that have antioxidant and anti-inflammatory properties, and various subspecies are cultivated. In this study, the effects of four Capsicum fruits and major constituents on oxidative stress and inflammatory reactions were measured using human dermal fibroblasts (HDFs) to verify their effects on skin damage. RESULTS: The inhibitory effects of nitric oxide (NO), reactive oxygen species (ROS), and prostaglandin E2 (PGE2 ) by cucumber hot pepper, red pepper (RDP), Shishito pepper (SSP), and Cheongyang pepper were determined in HDFs. RDP and SSP inhibited the production of NO, ROS, and PGE2 in tumor necrosis factor-alpha-stimulated HDFs. Additionally, SSP seeds restored tumor necrosis factor-alpha-induced increase in matrix metalloproteinase-1 and decreased procollagen I α1 (COLIA1). In high-performance liquid chromatography analysis of the capsaicinoids capsaicin (CAP) and dihydrocapsaicin (DHC), CAP was detected at a higher level than DHC in the peel and seeds of all four types of Capsicum fruits, and the total amount of capsaicinoids was the highest in SSP. CAP and DHC, which are major constituents of Capsicum fruits, also inhibited NO, ROS, and PGE2 and restored matrix metalloproteinase-1 and procollagen I α1. CONCLUSION: RDP and SSP were shown to have a significant protective effect on skin damage, including oxidative stress, inflammatory reactions, and reduction of collagens. Capsaicinoids CAP and DHC were proved as active constituents. This research may provide basic data for developing Capsicum fruits as ingredients to improve skin damage, such as inflammation and skin aging. © 2022 Society of Chemical Industry.


Asunto(s)
Capsicum , Humanos , Capsicum/química , Factor de Necrosis Tumoral alfa , Frutas/química , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/análisis , Antioxidantes/farmacología , Antioxidantes/análisis , Procolágeno/análisis , Especies Reactivas de Oxígeno/análisis , Capsaicina/análisis , Verduras , Alcanfor/análisis , Mentol/análisis , Antiinflamatorios/farmacología , Antiinflamatorios/análisis
2.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499128

RESUMEN

Human skin is composed of three layers, of which the dermis is composed of an extracellular matrix (ECM) comprising collagen, elastin, and other proteins. These proteins are reduced due to skin aging caused by intrinsic and extrinsic factors. Among various internal and external factors related to aging, ultraviolet (UV) radiation is the main cause of photoaging of the skin. UV radiation stimulates DNA damage, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine production such as tumor necrosis factor-alpha (TNF-α), and promotes ECM degradation. Stimulation with ROS and TNF-α upregulates mitogen-activated protein kinases (MAPKs), nuclear factor kappa B (NF-κB), and activator protein 1 (AP-1) transcription factors that induce the expression of the collagenase matrix metalloproteinase-1 (MMP-1). Moreover, TNF-α induces intracellular ROS production and several molecular pathways. Skin aging progresses through various processes and can be prevented through ROS generation and TNF-α inhibition. In our previous study, 2-O-ß-d-glucopyranosyl-4,6-dihydroxybenzaldehyde (GDHBA) was isolated from the Morus alba (mulberry) fruits and its inhibitory effect on MMP-1 secretion was revealed. In this study, we focused on the effect of GDHBA on TNF-α-induced human dermal fibroblasts (HDFs). GDHBA (50 µM) inhibited ROS generation (18.8%) and decreased NO (58.4%) and PGE2 levels (53.8%), significantly. Moreover, it decreased MMP-1 secretion (55.3%) and increased pro-collagen type I secretion (207.7%). GDHBA (50 µM) decreased the expression of different MAPKs as per western blotting; p-38: 35.9%; ERK: 47.9%; JNK: 49.5%; c-Jun: 32.1%; NF-κB: 55.9%; and cyclooxygenase-2 (COX-2): 31%. This study elucidated a novel role of GDHBA in protecting against skin inflammation and damage through external stimuli, such as UV radiation.


Asunto(s)
Benzaldehídos , Fibroblastos , Morus , Envejecimiento de la Piel , Humanos , Ciclooxigenasa 2/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morus/química , FN-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Rayos Ultravioleta/efectos adversos , Benzaldehídos/farmacología
3.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955819

RESUMEN

The skin acts as a mechanical barrier that protects the body from the exterior environment, and skin barrier function is attributed to the stratum corneum (SC), which is composed of keratinocytes and skin lipids. Skin barrier homeostasis is maintained by a delicate balance between the differentiation and exfoliation of keratinocytes, and keratinocyte desquamation is regulated by members of the serine protease kalikrein (KLK) family and their endogenous inhibitor SPINK5/LEKTI (serine protease inhibitor Kazal type 5/lympho-epithelial Kazal-type-related inhibitor). Furthermore, SPINK5/LEKTI deficiency is involved in impaired skin barrier function caused by KLK over-activation. We sought to determine whether increased SPINK5/LEKTI expression ameliorates atopic dermatitis (AD) by strengthening skin barrier function using the ethanol extract of Lobelia chinensis (LCE) and its active compound, diosmetin, by treating human keratinocytes with UVB and using a DNCB-induced murine model of atopic dermatitis. LCE or diosmetin dose-dependently increased the transcriptional activation of SPINK5 promoter and prevented DNCB-induced skin barrier damage by modulating events downstream of SPINK5, that is, KLK, PAR2 (protease activated receptor 2), and TSLP (thymic stromal lymphopoietin). LCE or diosmetin normalized immune response in DNCB treated SKH-1 hairless mice as determined by reductions in serum immunoglobulin E and interleukin-4 levels and numbers of lesion-infiltrating mast cells. Our results suggest that LCE and diosmetin are good candidates for the treatment of skin barrier-disrupting diseases such as Netherton syndrome or AD, and that they do so by regulating SPINK5/LEKTI.


Asunto(s)
Dermatitis Atópica , Lobelia , Inhibidor de Serinpeptidasas Tipo Kazal-5/metabolismo , Animales , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitroclorobenceno , Flavonoides , Humanos , Lobelia/metabolismo , Ratones , Proteínas Inhibidoras de Proteinasas Secretoras/farmacología
4.
Bioorg Med Chem Lett ; 40: 127919, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33711444

RESUMEN

We aimed to compare the estrogenic activities of compounds isolated from Moutan Cortex Radicis (MRC, Paeonia suffruticosa Andrews) and identify their potential use in hormone replacement therapy. We quantified seven marker components (gallic acid, oxypaeoniflorin, paeoniflorin, ethyl gallate, benzoic acid, benzoylpaeoniflorin, and paeonol) in MRC using a high-performance liquid chromatography simultaneous analysis assay. To investigate the estrogenic activity of MRC and the seven marker components, an E-screen assay was conducted using the estrogen receptor (ER)-positive MCF-7 human breast cancer cell line. Among them, ethyl gallate caused cell proliferation in a concentration-dependent manner at concentrations above 25 µM and was clearly suppressed by combination treatment with the ER antagonist ICI 182,780. Therefore, ethyl gallate may be a compound of MRC that can increase the estrogenic effect in ER-positive MCF-7 cells.


Asunto(s)
Estrona/química , Ácido Gálico/análogos & derivados , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Estrógenos , Ácido Gálico/química , Ácido Gálico/farmacología , Glucósidos/química , Terapia de Reemplazo de Hormonas , Humanos , Monoterpenos/química , Paeonia/química , Paeonia/metabolismo , Unión Proteica , Relación Estructura-Actividad
5.
Bioorg Chem ; 114: 105064, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34134032

RESUMEN

Eight new naphtho[1,2-c]furan derivatives (1-8) along with six known analogues (9-14) were isolated from culture medium of the basidiomycete Basidioradulum radula. The structures of these compounds were identified using spectroscopic analysis, and their absolute configurations were resolved using X-ray diffraction, ECD, and VCD. Compounds 7 and 14 inhibited the cell viability of human prostate cancer DU-145 cells with IC50 values of 7.54 ± 0.03 µM and 5.04 ± 0.03 µM, respectively. At 8 µM, compounds 7 and 14 increased the percentage of apoptotic cells and upregulated the protein expression related to the apoptosis caspase pathways in DU-145 cells. Furthermore, the hallmarks of cells undergoing apoptosis, such as chromatin condensation, were also observed at this concentration. However, compound 7 and 14 showed no effect on the proliferation of splenocytes isolated from cyclophosphamide-induce immunosuppressed mice.


Asunto(s)
Antineoplásicos/farmacología , Basidiomycota/química , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclofosfamida , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Bazo/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
Mar Drugs ; 19(4)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920324

RESUMEN

Menopause, caused by decreases in estrogen production, results in symptoms such as facial flushing, vaginal atrophy, and osteoporosis. Although hormone replacement therapy is utilized to treat menopausal symptoms, it is associated with a risk of breast cancer development. We aimed to evaluate the estrogenic activities of Spartina anglica (SA) and its compounds and identify potential candidates for the treatment of estrogen reduction without the risk of breast cancer. We evaluated the estrogenic and anti-proliferative effects of extracts of SA and its compounds in MCF-7 breast cancer cells. We performed an uterotrophic assay using an immature female rat model. Among extracts of SA, belowground part (SA-bg-E50) had potent estrogenic activity. In the immature female rat model, the administration of SA-bg-E50 increased uterine weight compared with that in the normal group. Among the compounds isolated from SA, 1,3-di-O-trans-feruloyl-(-)-quinic acid (1) had significant estrogenic activity and induced phosphorylation at serine residues of estrogen receptor (ER)α. All extracts and compounds from SA did not increase MCF-7 cell proliferation. Compound 1 is expected to act as an ERα ligand and have estrogenic effects, without side effects, such as breast cancer development.


Asunto(s)
Fitoestrógenos/farmacología , Extractos Vegetales/farmacología , Poaceae/metabolismo , Útero/efectos de los fármacos , Animales , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Ligandos , Células MCF-7 , Estructura Molecular , Tamaño de los Órganos , Fitoestrógenos/aislamiento & purificación , Fitoestrógenos/toxicidad , Componentes Aéreos de las Plantas/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Raíces de Plantas/metabolismo , Poaceae/crecimiento & desarrollo , Ratas Sprague-Dawley , Relación Estructura-Actividad , Útero/crecimiento & desarrollo , Útero/metabolismo
7.
Molecules ; 24(3)2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696085

RESUMEN

Many medicinal plants have been used traditionally in East Asia for the treatment of gastrointestinal disease and inflammation. The aim of this study was to evaluate the anti-inflammatory activity of 350 extracts (175 water extracts and 175 ethanol extracts) from 71 single plants, 97 mixtures of two plants, and seven formulations based on traditional medicine, to find herbal formulations to treat inflammatory bowel disease (IBD). In the in vitro screening, nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 levels were determined in LPS-treated RAW264.7 cells and the TNF-α induced monocyte-epithelial cell adhesion assay was used for the evaluation of the anti-inflammatory activity of the compounds. Dextran sulfate sodium (DSS)-induced colitis model and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model were used to evaluate the therapeutic effect against IBD of the samples selected from the in vitro screening. KM1608, composed of Zingiber officinale, Terminalia chebula and Aucklandia lappa, was prepared based on the screening experiments. The oral administration of KM1608 significantly attenuated the severity of colitis symptoms, such as weight loss, diarrhea, and rectal bleeding, in TNBS-induced colitis. In addition, inflammatory mediators, such as myeloperoxidase, TNF-α, and IL-6 levels decreased in the lysate of colon tissues treated with KM1608. Collectively, KM1608 ameliorated colitis through the regulation of inflammatory responses within the colon, which indicated that KM1608 had potential for the treatment of IBD.


Asunto(s)
Antiinflamatorios/farmacología , Evaluación Preclínica de Medicamentos , Extractos Vegetales/farmacología , Animales , Colitis/tratamiento farmacológico , Colitis/etiología , Colitis/metabolismo , Colitis/patología , Citocinas/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/metabolismo , Femenino , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Monocitos/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
8.
Biochem Biophys Res Commun ; 496(2): 508-514, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29353040

RESUMEN

Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is the main lipophilic flavonoid obtained from the Artemisia species. Eupatilin has been reported to have anti-apoptotic, anti-oxidative and anti-inflammatory activities. Previously, we found that eupatilin increases transcriptional activity and expression of peroxisome proliferator-activated receptor α (PPARα) in a keratinocyte cell line and acts as an agonist of PPARα. PPARα agonists ameliorate atopic dermatitis (AD) and restore the skin barrier function. In this study, we confirmed that the effects of eupatilin improved AD-like symptoms in an oxazolone-induced AD-like mouse model. Furthermore, we found that eupatilin suppressed the levels of serum immunoglobulin E (IgE), interleukin-4 (IL-4), and AD involved cytokines, such as tumor necrosis factor α (TNFα), interferon-γ (IFN-γ), IL-1ß, and thymic stromal lymphopoietin (TSLP), IL-33, IL-25 and increased the levels of filaggrin and loricrin in the oxazolone-induced AD-like mouse model. Taken together, our data suggest that eupatilin is a potential candidate for the treatment of AD.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Fármacos Dermatológicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , PPAR alfa/genética , Animales , Línea Celular Tumoral , Citocinas/genética , Citocinas/inmunología , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Relación Dosis-Respuesta a Droga , Femenino , Proteínas Filagrina , Regulación de la Expresión Génica , Inmunoglobulina E/sangre , Inmunoglobulina E/genética , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-33/genética , Interleucina-33/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Interleucinas/genética , Interleucinas/inmunología , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Oxazolona , PPAR alfa/inmunología , Ratas , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Linfopoyetina del Estroma Tímico
9.
Molecules ; 23(8)2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30126158

RESUMEN

Aucklandia lappa DC., Terminalia chebula Retz and Zingiber officinale Roscoe have been traditionally used in east Asia to treat chronic diarrhea and abdominal pain. This study aimed to evaluated the anti-inflammatory activity of KM1608, which is composed of three natural herbs in a mouse model of dextran sodium sulfate (DSS)-induced ulcerative colitis. The anti-inflammatory activity and underlying mechanism were assessed in vitro using LPS-treated RAW264.7 cells. The in vivo effect of KM1608 on DSS-induced colitis was examined after oral administration in mice. KM1608 significantly inhibited the inflammatory mediators such as nitric oxide, interleukin (IL)-6, monocyte chemotactic protein 1 (MCP-1) and tumor necrosis factor (TNF)-α in LPS-treated RAW264.7 cells. The inhibitory effect of KM1608 was attributed to the reduction of Akt phosphorylation in the LPS-treated cells. In the mouse model, oral administration of KM1608 significantly improved DSS-induced colitis symptoms, such as disease activity index (DAI), colon length, and colon weight, as well as suppressed the expression of IL-6, TNF-α, and myeloperoxidase (MPO) in the DSS-induced colitis tissues. Taken together, KM1608 improved colitis through the regulation of inflammatory responses, suggesting that KM1608 has potential therapeutic use in the treatment of inflammatory diseases.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/análisis , Cromatografía Líquida de Alta Presión , Colitis/tratamiento farmacológico , Colitis/etiología , Colitis/patología , Citocinas/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Ratones , Oxidación-Reducción/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fitoquímicos/análisis , Extractos Vegetales/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7
10.
Molecules ; 23(11)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30453579

RESUMEN

In recent years, investigations into the biochemistry of insect-associated bacteria have increased. When combined with analytical dereplication processes, these studies provide a powerful strategy to identify structurally and/or biologically novel compounds. Non-ribosomally synthesized cyclic peptides have a broad bioactivity spectrum with high medicinal potential. Here, we report the discovery of three new cyclic tripeptides: natalenamides A⁻C (compounds 1⁻3). These compounds were identified from the culture broth of the fungus-growing termite-associated Actinomadura sp. RB99 using a liquid chromatography (LC)/ultraviolet (UV)/mass spectrometry (MS)-based dereplication method. Chemical structures of the new compounds (1⁻3) were established by analysis of comprehensive spectroscopic methods, including one-dimensional (¹H and 13C) and two-dimensional (¹H-¹H-COSY, HSQC, HMBC) nuclear magnetic resonance spectroscopy (NMR), together with high-resolution electrospray ionization mass spectrometry (HR-ESIMS) data. The absolute configurations of the new compounds were elucidated using Marfey's analysis. Through several bioactivity tests for the tripeptides, we found that compound 3 exhibited significant inhibitory effects on 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production. The effect of compound 3 was similar to that of kojic acid, a compound extensively used as a cosmetic material with a skin-whitening effect.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Isópteros/microbiología , Melaninas/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , 1-Metil-3-Isobutilxantina/farmacología , Actinomycetales/química , Animales , Antiinflamatorios/química , Antineoplásicos/química , Proliferación Celular , Macrófagos/citología , Macrófagos/efectos de los fármacos , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Tumorales Cultivadas
11.
Biochem Biophys Res Commun ; 493(1): 220-226, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28899779

RESUMEN

Eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone) is a flavonoid compound exhibiting several beneficial biological activities, including neuroprotection, anti-cancer, antinociception, chondroprotection, anti-oxidation, and anti-inflammation. Our previous study demonstrated that eupatilin specifically activates peroxisome proliferator-activated receptor alpha (PPARα) through direct binding. The PPAR subfamily includes ligand-dependent transcription factors that consist of three isotypes: PPARα, PPARß/δ, and PPARγ. All isotypes are involved in inflammation, epidermal proliferation/differentiation and skin barrier function. Among them, PPARα regulates lipid and glucose metabolism and skin homeostasis. In this study, we confirm that the ability of eupatilin as a PPARα activator significantly inhibited tumor necrosis factor-alpha (TNFα)-induced matrix metalloproteinase (MMP)-2/-9 expression and proteolytic activity in HaCaT human epidermal keratinocytes. Furthermore, we found that eupatilin subsequently suppressed IκBα phosphorylation, blocked NF-κB p65 nuclear translocation and down-regulated MAPK/AP-1 signaling via PPARα activation. Taken together, our data suggest that eupatilin inhibits TNFα-induced MMP-2/-9 expression by suppressing NF-κB and MAPK/AP-1 pathways via PPARα. Our findings suggest the usefulness of eupatilin for preventing skin aging.


Asunto(s)
Flavonoides/administración & dosificación , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , FN-kappa B/metabolismo , PPAR alfa/agonistas , Factor de Necrosis Tumoral alfa/administración & dosificación , Línea Celular , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , PPAR alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
12.
Biochem Biophys Res Commun ; 493(1): 765-772, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28851651

RESUMEN

Pectolinarin and pectolinarigenin have been reported to be major compounds in Cirsium setidens. In the present study, we demonstrated inhibitory effects of pectolinarin and pectolinarigenin from C. setidens on melanogenesis. Melanin synthesis was decreased in both pectolinarin- and pectolinarigenin-treated melan-a cells and in a reconstructed human skin model. However, pectolinarigenin treatment showed more potent inhibitory activity of melanin synthesis than did pectolinarin treatment. The concentrations of pectolinarin and pectolinarigenin in C. setidens water extracts were determined by HPLC. Unfortunately, the amount of pectolinarigenin of C. setidens water extract was lower than that of pectolinarin. To increase the pectolinarigenin content in C. setidens water extract, several component conversion methods were studied. Consequently, we identified that microwave irradiation under 1% acetic acid was an optimum sugar elimination method.


Asunto(s)
Cromonas/administración & dosificación , Cirsium/química , Melaninas/biosíntesis , Piel/efectos de los fármacos , Piel/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Iridoides/administración & dosificación , Extractos Vegetales/administración & dosificación , Piel/citología
13.
J Diet Suppl ; 21(3): 389-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38062982

RESUMEN

Senescence can promote hyperplastic pathologies, such as cancer. Prostate cancer is the second most common type of cancer in men. The p21-mediate cellular senescence, facilitated through the tumor suppressor p53-dependent pathway, is considered the primary mechanism for cancer treatment. Aloe-emodin, has been reported to exert anticancer effects in various types of cancers. This study aimed to investigate the bioactivity of aloe-emodin in LNCaP cells via the activation of p21-mediated cellular senescence. Aloe-emodin treatment increased the percentage of cells in the G1 phase while decreasing the percentage in the S phase. This effect was reflected in the expression levels of proteins associated with cell cycle progression, such as p21CIP, retinoblastoma protein, and cyclin-dependent kinase2/4 in LNCaP cells. However, aloe-emodin-treated LNCaP cells did not induce cell cycle arrest at G2/M checkpoint. Moreover, increased senescence-associated-galactosidase activity was observed in a dose-dependent manner following treatment with aloe-emodin. Aloe-emodin also induced DNA damage by modulating the expression of histone H2AX and lamin B1. Furthermore, aloe-emodin inhibited the proliferation of LNCaP cells, contrasting with the exponential growth observed in the nontreated cells. Importantly, this inhibition did not impact the immune system, as evidenced by the increased proliferation of splenocytes isolated from mice. These findings provide preliminary evidence of the anticancer effect of aloe-emodin in LNCaP cells, necessitating further investigations into the underlying mechanisms in vivo and human subjects.


Asunto(s)
Aloe , Antraquinonas , Emodina , Neoplasias de la Próstata , Rheum , Humanos , Ratones , Animales , Masculino , Emodina/farmacología , Apoptosis , Ciclo Celular , Senescencia Celular , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral
14.
Plants (Basel) ; 13(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732481

RESUMEN

This present study investigated the anti-skin-aging properties of Rosa rugosa. Initially, phenolic compounds were isolated from a hot water extract of Rosa rugosa's flower buds. Through repeated chromatography (column chromatography, MPLC, and prep HPLC), we identified nine phenolic compounds (1-9), including a previously undescribed depside, rosarugoside D (1). The chemical structure of 1 was elucidated via NMR, HR-MS, UV, and hydrolysis. Next, in order to identify bioactive compounds that are effective against TNF-α-induced NHDF cells, we measured intracellular ROS production in samples treated with each of the isolated compounds (1-9). All isolates reduced the level of ROS at a concentration of 10 µM. Particularly, two depsides-rosarugosides A and D (2 and 1)-significantly inhibited ROS expression in TNF-α-induced NHDFs compared to the other phenolic compounds. Subsequently, the production of MMP-1 and procollagen type Ι α1 by these two depsides was examined. Remarkably, rosarugoside A (2) significantly decreased MMP-1 secretion at all concentrations. In contrast, rosarugoside D (1) regulated the expression of procollagen type Ι α1. These findings collectively suggest that Rosa rugosa extracts and their isolated compounds, rosarugosides A (2) and D (1), hold significant potential for protecting against aging and skin damage. Overall, these findings suggest that Rosa rugosa extracts and their isolated compounds, rosarugosides A (2) and D (1), have the potential to prevent and protect against aging and skin damage, although more specific quantitative analysis is needed.

15.
J Antibiot (Tokyo) ; 77(4): 257-263, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38243062

RESUMEN

Using mass spectrometry (MS)-guided isolation methods, a new thiodiketopiperazine derivative (1) and exserohilone (2) were isolated from an EtOAc-extract of Setosphaeria rostrata culture medium. The chemical structure of the new compound was elucidated by MS and NMR spectroscopy, and the absolute configurations were established by the quantum mechanical calculations of electronic circular dichroism. All isolated compounds were examined for their effects on reactive oxygen species (ROS) production, matrix metalloproteinase 1 (MMP-1) secretion, and procollagen type I α1 secretion in tumor necrosis factor (TNF)-α-induced human dermal fibroblasts. Compound 1 and exserohilone (2) exhibited the inhibition of TNF-α-induced ROS generation and MMP-1 secretion. Additionally, compound 1 and exserohilone (2) increased the procollagen type I α1 secretion. Compound 1 docked computationally into the active site of MMP-1 (-6.0 kcal/mol).


Asunto(s)
Ascomicetos , Metaloproteinasa 1 de la Matriz , Factor de Necrosis Tumoral alfa , Humanos , Metaloproteinasa 1 de la Matriz/farmacología , Especies Reactivas de Oxígeno , Fibroblastos
16.
Plants (Basel) ; 12(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687271

RESUMEN

Chung-Sang-Bo-Ha-Hwan (CSBHH) is an herbal prescription widely used to treat various chronic respiratory diseases. To investigate the system-level treatment mechanisms of CSBHH in respiratory tract diseases, we identified 56 active ingredients of CSBHH and evaluated the degree of overlap between their targets and respiratory tract disease-associated proteins. We then investigated the respiratory tract disease-related signaling pathways associated with CSBHH targets. Enrichment analysis showed that the CSBHH targets were significantly associated with various signaling pathways related to inflammation, alveolar structure, and tissue fibrosis. Experimental validation was conducted using phorbol-12-myristate-13-acetate (PMA)-stimulated NCI-H292 cells by analyzing the mRNA expression levels of biomarkers (IL-1ß and TNF-α for inflammation; GSTP1, GSTM1, and PTEN for apoptosis) derived from network pharmacological analysis, in addition to the mucin genes MUC5AC and MUC2, to investigate the phlegm-expelling effect of CSBHH. The mRNA expression levels of these genes were consistent with network pharmacological predictions in a concentration-dependent manner. These results suggest that the therapeutic mechanisms of CSBHH in respiratory tract diseases could be attributed to the simultaneous action of multiple active ingredients in the herbal prescription.

17.
Antioxidants (Basel) ; 12(7)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37507970

RESUMEN

Human skin comprises the epidermis and dermis, which perform interactive functional activities with each other in order to maintain the skin's tensile strength. In particular, the dermal layer is crucial for skin protection. However, skin aging destroys collagen and elastin fibers, causing wrinkles, pigments, and sagging. Skin aging-related factors, such as tumor necrosis factor-α (TNF-α), promote the generation of intercellular reactive oxygen species (ROS). These are known to stimulate the hypersecretion of matrix metalloproteinase-1 (MMP-1), which degrades collagen and inhibits collagen synthesis. In this study, as part of our ongoing discovery of natural products, we investigated potential natural products derived from ginkgo fruit (Ginkgo biloba fruit) with protective effects against TNF-α-induced skin aging. Phytochemical investigation of the MeOH extract of G. biloba fruits, aided by liquid chromatography-mass spectrometry, led to the isolation of 14 compounds (1-14) from the n-butanol-soluble fraction. These were structurally determined to be: (E)-coniferin (1), syringin (2), 4-hydroxybenzoic acid 4-O-ß-D-glucopyranoside (3), vanillic acid 4-O-ß-D-glucopyranoside (4), glucosyringic acid (5), (E)-ferulic acid 4-O-ß-D-glucoside (6), (E)-sinapic acid 4-O-ß-D-glucopyranoside (7), ginkgotoxin-5-glucoside (8), ginkgopanoside (9), (Z)-4-coumaric acid 4-O-ß-D-glucopyranoside (10), (1'R,2'S,5'R,8'S,2'Z,4'E)-dihydrophaseic acid 3'-O-ß-D-glucopyranoside (11), eucomic acid (12), rutin (13), and laricitrin 3-rutinoside (L3R) (14). Biological evaluation of the isolated compounds for their effects on intracellular ROS generation showed that, of these 14 compounds, L3R (14) inhibited TNF-α-stimulated ROS generation (p < 0.001 at 100 µM). Inhibition of ROS generation by L3R led to the suppression of MMP-1 secretion and protection against collagen degradation. The inhibitory effect of L3R was mediated by the inhibition of extracellular signal regulated kinase (ERK) phosphorylation. Furthermore, L3R diminished the secretion of pro-inflammatory cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8). Based on these experimental results, L3R is a potential bioactive natural product that can be used to protect against skin damage, including aging, in cosmetics and pharmaceuticals.

18.
Plants (Basel) ; 12(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36904043

RESUMEN

Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our ongoing phytochemical study aimed at discovering bioactive natural products, we investigated potential bioactive methoxyflavones from K. parviflora rhizomes. Phytochemical analysis aided by liquid chromatography-mass spectrometry (LC-MS) led to the isolation of six methoxyflavones (1-6) from the n-hexane fraction of the methanolic extract of K. parviflora rhizomes. The isolated compounds were structurally determined to be 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2), 7,4'-dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4'-trimethylkaempferol (5), and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (6), based on NMR data and LC-MS analysis. All of the isolated compounds were evaluated for their anti-melanogenic activities. In the activity assay, 7,4'-dimethylapigenin (3) and 3,5,7-trimethoxyflavone (4) significantly inhibited tyrosinase activity and melanin content in IBMX-stimulated B16F10 cells. In addition, structure-activity relationship analysis revealed that the methoxy group at C-5 in methoxyflavones is key to their anti-melanogenic activity. This study experimentally demonstrated that K. parviflora rhizomes are rich in methoxyflavones and can be a valuable natural resource for anti-melanogenic compounds.

19.
Antioxidants (Basel) ; 12(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891882

RESUMEN

Skin aging is a complex biological process influenced by a variety of factors, including UV radiation. UV radiation accelerates collagen degradation via the production of reactive oxygen species (ROS) and cytokines, including TNF-α. In a prior investigation, the inhibitory properties of flavonol and flavone glucuronides derived from Potentilla chinensis on TNF-α-induced ROS and MMP-1 production were explored. Consequently, we verified the skin-protective effects of these flavonol and flavone glucuronides, including potentilloside A, from P. chinensis, and conducted a structure-activity relationship analysis as part of our ongoing research. We investigated the protective effects of the extract and its 11 isolates on TNF-α-stimulated normal human dermal fibroblasts (NHDFs). Ten flavonol and flavone glucuronides significantly inhibited ROS generation (except for 7) and suppressed MMP-1 secretion, except for 2. In contrast, six isolates (1, 5, 6, 11, 9, 10, and 11) showed a significant reverse effect on COLIA1 secretion. Comparing the three experimental results of each isolate, potentilloside A (1) showed the most potent skin cell-protective effect among the isolates. Evaluation of the signaling pathway of potentilloside A in TNF-α-stimulated NHDF revealed that potentilloside A inhibits the phosphorylation of ERK, JNK, and c-Jun. Taken together, these results suggest that compounds isolated from P. chinensis, especially potentilloside A, can be used to inhibit skin damage, including aging.

20.
Antioxidants (Basel) ; 11(2)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35204307

RESUMEN

Reactive oxygen species (ROS) are generated during intrinsic (chronological aging) and extrinsic (photoaging) skin aging. Therefore, antioxidants that inhibit ROS production may be involved in delaying skin aging. In this study, we investigated the potential effects of compounds isolated from black ginger, Kaempferia parviflora, a traditional medicinal plant, on normal human dermal fibroblasts in the context of inflammation and oxidative stress. The isolated compounds were structurally characterized as 5-hydroxy-7-methoxyflavone (1), 3,7-dimethoxy-5-hydroxyflavone (2), 5-hydroxy-3,7,3,4-tetramethoxyflavone (3), 7,4-dimethylapigenin (4), 3,7,4-trimethylkaempferol (5), and 3,5,7-trimethoxyflavone (6), using nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-mass spectrometry (LC/MS) analyses. These flavonoids were first evaluated for their ability to suppress extracellular matrix degradation in normal human dermal fibroblasts. Of these, 3,5,7-trimethoxyflavone (6) significantly inhibited the tumor necrosis factor (TNF)-α-induced high expression and secretion of matrix metalloproteinase (MMP)-1 by cells. We further found that 3,5,7-trimethoxyflavone suppressed the excessive increase in ROS, mitogen-activated protein kinases (MAPKs), Akt, and cyclooxygenase-2 (COX-2)and increased heme oxygenase (HO)-1 expression. The expression of pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and IL-8, was also suppressed by 3,5,7-trimethoxyflavone (6). Taken together, our results indicate that 3,5,7-trimethoxyflavone (6) isolated from K. parviflora is a potential candidate for ameliorating skin damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA