Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 177(4): 852-864.e14, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982597

RESUMEN

It is largely unclear whether genes that are naturally embedded in lamina-associated domains (LADs) are inactive due to their chromatin environment or whether LADs are merely secondary to the lack of transcription. We show that hundreds of human promoters become active when moved from their native LAD position to a neutral context in the same cells, indicating that LADs form a repressive environment. Another set of promoters inside LADs is able to "escape" repression, although their transcription elongation is attenuated. By inserting reporters into thousands of genomic locations, we demonstrate that escaper promoters are intrinsically less sensitive to LAD repression. This is not simply explained by promoter strength but by the interplay between promoter sequence and local chromatin features that vary strongly across LADs. Enhancers also differ in their sensitivity to LAD chromatin. This work provides a general framework for the systematic understanding of gene regulation by repressive chromatin.


Asunto(s)
Regulación de la Expresión Génica/genética , Lámina Nuclear/genética , Regiones Promotoras Genéticas/genética , Cromatina/genética , Cromatina/metabolismo , Expresión Génica/genética , Genoma Humano/genética , Genómica , Humanos , Células K562
2.
Mol Cell ; 81(10): 2216-2230.e10, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33848455

RESUMEN

DNA double-strand break (DSB) repair is mediated by multiple pathways. It is thought that the local chromatin context affects the pathway choice, but the underlying principles are poorly understood. Using a multiplexed reporter assay in combination with Cas9 cutting, we systematically measure the relative activities of three DSB repair pathways as a function of chromatin context in >1,000 genomic locations. This reveals that non-homologous end-joining (NHEJ) is broadly biased toward euchromatin, while the contribution of microhomology-mediated end-joining (MMEJ) is higher in specific heterochromatin contexts. In H3K27me3-marked heterochromatin, inhibition of the H3K27 methyltransferase EZH2 reverts the balance toward NHEJ. Single-stranded template repair (SSTR), often used for precise CRISPR editing, competes with MMEJ and is moderately linked to chromatin context. These results provide insight into the impact of chromatin on DSB repair pathway balance and guidance for the design of Cas9-mediated genome editing experiments.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Secuencia de Bases , Reparación del ADN por Unión de Extremidades , Eucromatina/metabolismo , Reordenamiento Génico , Genoma Humano , Heterocromatina/metabolismo , Humanos , Mutación INDEL/genética , Células K562 , Cinética , Unión Proteica , Reproducibilidad de los Resultados
3.
EMBO J ; 43(21): 5260-5287, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39322756

RESUMEN

Lamina-associated domains (LADs) are large chromatin regions that are associated with the nuclear lamina (NL) and form a repressive environment for transcription. The molecular players that mediate gene repression in LADs are currently unknown. Here, we performed FACS-based whole-genome genetic screens in human cells using LAD-integrated fluorescent reporters to identify such regulators. Surprisingly, the screen identified very few NL proteins, but revealed roles for dozens of known chromatin regulators. Among these are the negative elongation factor (NELF) complex and interacting factors involved in RNA polymerase pausing, suggesting that regulation of transcription elongation is a mechanism to repress transcription in LADs. Furthermore, the chromatin remodeler complex BAF and the activation complex Mediator can work both as activators and repressors in LADs, depending on the local context and possibly by rewiring heterochromatin. Our data indicate that the fundamental regulators of transcription and chromatin remodeling, rather than interaction with NL proteins, play a major role in transcription regulation within LADs.


Asunto(s)
Cromatina , Lámina Nuclear , Humanos , Lámina Nuclear/metabolismo , Lámina Nuclear/genética , Cromatina/metabolismo , Cromatina/genética , Regulación de la Expresión Génica , Ensamble y Desensamble de Cromatina , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
4.
Nature ; 604(7906): 571-577, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418676

RESUMEN

Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.


Asunto(s)
Cromosomas , Elementos de Facilitación Genéticos , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Genómica , Mamíferos/genética , Regiones Promotoras Genéticas/genética
5.
Nucleic Acids Res ; 51(11): 5499-5511, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37013986

RESUMEN

Classic promoter mutagenesis strategies can be used to study how proximal promoter regions regulate the expression of particular genes of interest. This is a laborious process, in which the smallest sub-region of the promoter still capable of recapitulating expression in an ectopic setting is first identified, followed by targeted mutation of putative transcription factor binding sites. Massively parallel reporter assays such as survey of regulatory elements (SuRE) provide an alternative way to study millions of promoter fragments in parallel. Here we show how a generalized linear model (GLM) can be used to transform genome-scale SuRE data into a high-resolution genomic track that quantifies the contribution of local sequence to promoter activity. This coefficient track helps identify regulatory elements and can be used to predict promoter activity of any sub-region in the genome. It thus allows in silico dissection of any promoter in the human genome to be performed. We developed a web application, available at cissector.nki.nl, that lets researchers easily perform this analysis as a starting point for their research into any promoter of interest.


Asunto(s)
Regiones Promotoras Genéticas , Programas Informáticos , Humanos , Sitios de Unión , Genoma Humano/genética , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos
6.
EMBO J ; 39(6): e103159, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32080885

RESUMEN

Transcriptionally inactive genes are often positioned at the nuclear lamina (NL), as part of large lamina-associated domains (LADs). Activation of such genes is often accompanied by repositioning toward the nuclear interior. How this process works and how it impacts flanking chromosomal regions are poorly understood. We addressed these questions by systematic activation or inactivation of individual genes, followed by detailed genome-wide analysis of NL interactions, replication timing, and transcription patterns. Gene activation inside LADs typically causes NL detachment of the entire transcription unit, but rarely more than 50-100 kb of flanking DNA, even when multiple neighboring genes are activated. The degree of detachment depends on the expression level and the length of the activated gene. Loss of NL interactions coincides with a switch from late to early replication timing, but the latter can involve longer stretches of DNA. Inactivation of active genes can lead to increased NL contacts. These extensive datasets are a resource for the analysis of LAD rewiring by transcription and reveal a remarkable flexibility of interphase chromosomes.


Asunto(s)
Cromosomas/genética , Replicación del ADN/genética , Genoma/genética , Lámina Nuclear/genética , Activación Transcripcional/genética , Animales , Línea Celular , Núcleo Celular/genética , Cromatina/genética , Células Madre Embrionarias , Femenino , Humanos , Interfase , Ratones , Neuropilina-1/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXD/genética , Transgenes
7.
Nucleic Acids Res ; 46(10): e58, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29538768

RESUMEN

Template-directed CRISPR/Cas9 editing is a powerful tool for introducing subtle mutations in genomes. However, the success rate of incorporation of the desired mutations at the target site is difficult to predict and therefore must be empirically determined. Here, we adapted the widely used TIDE method for quantification of templated editing events, including point mutations. The resulting TIDER method is a rapid, cheap and accessible tool for testing and optimization of template-directed genome editing strategies. A free web tool for TIDER data analysis is available at http://tide.nki.nl.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Programas Informáticos , Animales , Línea Celular , Células Madre Embrionarias , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Ratones , Mutación , Reacción en Cadena de la Polimerasa , ARN Guía de Kinetoplastida , Reproducibilidad de los Resultados , Epitelio Pigmentado de la Retina/citología , Telomerasa/genética
8.
BMC Bioinformatics ; 16: 267, 2015 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-26298294

RESUMEN

BACKGROUND: Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. RESULTS: We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. CONCLUSIONS: PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.


Asunto(s)
Biomarcadores de Tumor/genética , Gráficos por Computador , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica/métodos , Neoplasias/genética , Transducción de Señal/efectos de los fármacos , Programas Informáticos , Animales , Automatización , Ciclofosfamida , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Neoplasias/tratamiento farmacológico , Flujo de Trabajo
9.
bioRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352411

RESUMEN

Sequence-specific interactions of transcription factors (TFs) with genomic DNA underlie many cellular processes. High-throughput in vitro binding assays coupled with computational analysis have made it possible to accurately define such sequence recognition in a biophysically interpretable yet mechanism-agonistic way for individual TFs. The fact that such sequence-to-affinity models are now available for hundreds of TFs provides new avenues for predicting how the DNA binding specificity of a TF changes when its protein sequence is mutated. To this end, we developed an analytical framework based on a tetrahedron embedding that can be applied at the level of a given structural TF family. Using bHLH as a test case, we demonstrate that we can systematically map dependencies between the protein sequence of a TF and base preference within the DNA binding site. We also develop a regression approach to predict the quantitative energetic impact of mutations in the DNA binding domain of a TF on its DNA binding specificity, and perform SELEX-seq assays on mutated TFs to experimentally validate our results. Our results point to the feasibility of predicting the functional impact of disease mutations and allelic variation in the cell-wide TF repertoire by leveraging high-quality functional information across sets of homologous wild-type proteins.

10.
Nat Commun ; 15(1): 5334, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909016

RESUMEN

DNA double-strand breaks are repaired by multiple pathways, including non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ). The balance of these pathways is dependent on the local chromatin context, but the underlying mechanisms are poorly understood. By combining knockout screening with a dual MMEJ:NHEJ reporter inserted in 19 different chromatin environments, we identified dozens of DNA repair proteins that modulate pathway balance dependent on the local chromatin state. Proteins that favor NHEJ mostly synergize with euchromatin, while proteins that favor MMEJ generally synergize with distinct types of heterochromatin. Examples of the former are BRCA2 and POLL, and of the latter the FANC complex and ATM. Moreover, in a diversity of human cancer types, loss of several of these proteins alters the distribution of pathway-specific mutations between heterochromatin and euchromatin. Together, these results uncover a complex network of proteins that regulate MMEJ:NHEJ balance in a chromatin context-dependent manner.


Asunto(s)
Cromatina , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Eucromatina , Heterocromatina , Humanos , Cromatina/metabolismo , Cromatina/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Eucromatina/metabolismo , Eucromatina/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN
11.
Front Genet ; 12: 785947, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35173762

RESUMEN

DNA double-strand breaks (DSBs) can be repaired through various pathways. Understanding how these pathways are regulated is of great interest for cancer research and optimization of gene editing. The local chromatin environment can affect the balance between repair pathways, but this is still poorly understood. Here we provide a detailed protocol for DSB-TRIP, a technique that utilizes the specific DNA scars left by DSB repair pathways to study pathway usage throughout the genome. DSB-TRIP randomly integrates a repair reporter into many genomic locations, followed by the induction of DSBs in the reporter. Multiplexed sequencing of the resulting scars at all integration sites then reveals the balance between several repair pathways, which can be linked to the local chromatin state of the integration sites. Here we present a step-by-step protocol to perform DSB-TRIP in K562 cells and to analyse the data by a dedicated computational pipeline. We discuss strengths and limitations of the technique, as well as potential additional applications to study DNA repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA