Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 144(7): 1402-9, 1409.e1-5, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23399955

RESUMEN

BACKGROUND & AIMS: Gastrointestinal polyposis is a common clinical problem, yet there is no consensus on how to best manage patients with moderate-load polyposis. Identifying genetic features of this disorder could improve management and especially surveillance of these patients. We sought to determine the prevalence of hamartomatous polyposis-associated mutations in the susceptibility genes PTEN, BMPR1A, SMAD4, ENG, and STK11 in individuals with ≥5 gastrointestinal polyps, including at least 1 hamartomatous or hyperplastic/serrated polyp. METHODS: We performed a prospective, referral-based study of 603 patients (median age: 51 years; range, 2-89 years) enrolled from June 2006 through January 2012. Genomic DNA was extracted from peripheral lymphocytes and analyzed for specific mutations and large rearrangements in PTEN, BMPR1A, SMAD4, and STK11, as well as mutations in ENG. Recursive partitioning analysis was used to determine cutoffs for continuous variables. The prevalence of mutations was compared using Fisher's exact test. Logistic regression analyses were used to determine univariate and multivariate risk factors. RESULTS: Of 603 patients, 119 (20%) had a personal history of colorectal cancer and most (n = 461 [76%]) had <30 polyps. Seventy-seven patients (13%) were found to have polyposis-associated mutations, including 11 in ENG (1.8%), 13 in PTEN (2.2%), 13 in STK11 (2.2%), 20 in BMPR1A (3.3%), and 21 in SMAD4 (3.5%). Univariate clinical predictors for risk of having these mutations included age at presentation younger than 40 years (19% vs 10%; P = .008), a polyp burden of ≥30 (19% vs 11%; P = .014), and male sex (16% vs 10%; P = .03). Patients who had ≥1 ganglioneuroma (29% vs 2%; P < .001) or presented with polyps of ≥3 histologic types (20% vs 2%; P = .003) were more likely to have germline mutations in PTEN. CONCLUSIONS: Age younger than 40 years, male sex, and specific polyp histologies are significantly associated with risk of germline mutations in hamartomatous-polyposis associated genes. These associations could guide clinical decision making and further investigations.


Asunto(s)
Antígenos CD/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Pólipos del Colon/genética , Mutación de Línea Germinal , Fosfohidrolasa PTEN/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Proteína Smad4/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Endoglina , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Peutz-Jeghers/genética , Estudios Prospectivos , Adulto Joven
2.
Gastroenterology ; 143(6): 1482-1491.e3, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22960657

RESUMEN

BACKGROUND & AIMS: Familial visceral myopathy (FVM) is a rare inherited form of myopathic pseudo-obstruction; little is known about the genetic factors that cause this disorder. FVM is characterized by impaired functions of enteric smooth muscle cells, resulting in abnormal intestinal motility, severe abdominal pain, malnutrition, and even death. We searched for genetic factors that might cause this disorder. METHODS: We performed whole-exome sequence analysis of blood samples from 2 individuals in a family that had 7 members diagnosed with FVM. Sanger sequencing was used to analyze additional family members and 280 individuals without this disorder (controls). Intestinal tissue samples from 4 patients and 2 controls were analyzed by immunohistochemistry. Functional studies, including immunofluorescence, cell contractility, and actomyosin structure analyses, were performed using CRL-1976 and U2OS sarcoma cell lines. RESULTS: Whole-exome sequence analysis of DNA from 2 siblings identified 83 gene variants that were shared between the siblings and considered as possible disease-causing changes. A heterozygous variant, R148S in enteric smooth muscle actin γ-2 (ACTG2), segregated with disease phenotype. Intestinal smooth muscle (muscularis propria) from individuals with FVM had reduced levels of cytoplasmic ACTG2 and abnormal accumulation of the protein into intracellular inclusions compared with controls. Sarcoma cells that expressed exogenous ACTG2(R148S) incorporated reduced amounts of this protein into actin filaments compared with cells expressing ACTG2(wt) (P < .001). ACTG2(R148S) also interfered with actin cytoskeleton organization and the contractile activities of the cells, indicating a dominant-negative effect. These findings, along with the site of the variation in the protein, indicate that ACTG2 R148S interferes with actin filament assembly. CONCLUSIONS: We identified the R148S variant in ACTG2 as a cause of FVM in one family. The altered ACTG2 protein appears to aggregate, rather than form actin filaments, in intestinal smooth muscle tissue. This defect could impair contraction of the visceral smooth muscle cells and reduce bowel motility.


Asunto(s)
Actinas/genética , Actinas/metabolismo , Mucosa Intestinal/metabolismo , Seudoobstrucción Intestinal/genética , Seudoobstrucción Intestinal/metabolismo , Músculo Liso/metabolismo , Mutación Missense/genética , Adulto , Segregación Cromosómica/genética , Exoma/genética , Femenino , Finlandia , Motilidad Gastrointestinal/fisiología , Estudio de Asociación del Genoma Completo , Heterocigoto , Humanos , Seudoobstrucción Intestinal/fisiopatología , Intestinos/fisiopatología , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Músculo Liso/fisiopatología , Plexo Mientérico/anomalías , Plexo Mientérico/metabolismo , Plexo Mientérico/fisiopatología , Linaje , Fenotipo
3.
Blood ; 118(3): 493-8, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21562039

RESUMEN

A strong clustering of Hodgkin lymphoma in certain families has been long acknowledged. However, the genetic factors in the background of familial Hodgkin lymphoma are largely unknown. We have studied a family of 4 cousins with a rare subtype of the disease, nodular lymphocyte predominant Hodgkin lymphoma. We applied exome sequencing together with genome-wide linkage analysis to this family and identified a truncating germline mutation in nuclear protein, ataxia-telangiectasia locus (NPAT) gene, which segregated in the family. We also studied a large number of samples from other patients with Hodgkin lymphoma, and a germline variation leading to the deletion of serine 724 was found in several cases suggesting an elevated risk for the disease (odds ratio = 4.11; P = .018). NPAT is thus far the first gene implicated in nodular lymphocyte predominant Hodgkin lymphoma predisposition.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mutación de Línea Germinal , Enfermedad de Hodgkin/epidemiología , Enfermedad de Hodgkin/genética , Proteínas Nucleares/genética , Línea Celular Tumoral , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Finlandia/epidemiología , Ligamiento Genético , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Humanos , Linfoma Folicular/epidemiología , Linfoma Folicular/genética , Masculino , Linaje , Factores de Riesgo , Adulto Joven
4.
Int J Cancer ; 130(7): 1558-66, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21544814

RESUMEN

Defects in the mismatch repair system lead to microsatellite instability (MSI), a feature observed in ∼ 15% of all colorectal cancers (CRCs). Microsatellite mutations that drive tumourigenesis, typically inactivation of tumour suppressors, are selected for and are frequently detected in MSI cancers. Here, we evaluated somatic mutations in microsatellite repeats of 790 genes chosen based on reduced expression in MSI CRC and existence of a coding mononucleotide repeat of 6-10 bp in length. All the repeats were initially sequenced in 30 primary MSI CRC samples and whenever frameshift mutations were identified in >20%, additional 70 samples were sequenced. To distinguish driver mutations from passengers, we similarly analyzed the occurrence of frameshift mutations in 121 intronic control repeats and utilized a statistical regression model to determine cut-off mutation frequencies for repeats of all types (A/T and C/G, 6-10 bp). Along with several know target genes, including TGFBR2, ACVR2, and MSH3, six novel candidate driver genes emerged that harbored significantly more mutations than identical control repeats. The mutation frequencies in 100 MSI CRC samples were 51% in G8 of GLYR1, 47% in T9 of ABCC5, 43% in G8 of WDTC1, 33% in A8 of ROCK1, 30% in T8 of OR51E2, and 28% in A8 of TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in tumors carrying biallelic mutations, supporting a loss of function hypothesis. This is a large scale, unbiased effort to identify genes that when mutated are likely to contribute to MSI CRC development.


Asunto(s)
Neoplasias Colorrectales/genética , ADN de Neoplasias/genética , Inestabilidad de Microsatélites , Línea Celular Tumoral , Mutación del Sistema de Lectura , Células HCT116 , Humanos , Inmunohistoquímica/métodos , Repeticiones de Microsatélite , Tasa de Mutación , Análisis de Regresión
5.
J Pathol ; 225(1): 4-11, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21630274

RESUMEN

Germline mutations in the FH gene encoding the Krebs cycle enzyme fumarate hydratase predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. FH-deficient cells and tissues accumulate high levels of fumarate, which may act as an oncometabolite and contribute to tumourigenesis. A recently proposed role for fumarate in the covalent modification of cysteine residues to S-(2-succinyl) cysteine (2SC) (termed protein succination) prompted us to assess 2SC levels in our existing models of HLRCC. Herein, using a previously characterized antibody against 2SC, we show that genetic ablation of FH causes high levels of protein succination. We next hypothesized that immunohistochemistry for 2SC would serve as a metabolic biomarker for the in situ detection of FH-deficient tissues. Robust detection of 2SC was observed in Fh1 (murine FH)-deficient renal cysts and in a retrospective series of HLRCC tumours (n = 16) with established FH mutations. Importantly, 2SC was undetectable in normal tissues (n = 200) and tumour types not associated with HLRCC (n = 1342). In a prospective evaluation of cases referred for genetic testing for HLRCC, the presence of 2SC-modified proteins (2SCP) correctly predicted genetic alterations in FH in every case. In two series of unselected type II papillary renal cancer (PRCC), prospectively analysed by 2SCP staining followed by genetic analysis, the biomarker accurately identified previously unsuspected FH mutations (2/33 and 1/36). The investigation of whether metabolites in other tumour types produce protein modification signature(s) that can be assayed using similar strategies will be of interest in future studies of cancer.


Asunto(s)
Carcinoma de Células Renales/diagnóstico , Fumarato Hidratasa/deficiencia , Neoplasias Renales/diagnóstico , Leiomiomatosis/diagnóstico , Síndromes Neoplásicos Hereditarios/diagnóstico , Adulto , Anciano , Animales , Biomarcadores de Tumor/deficiencia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Modelos Animales de Enfermedad , Femenino , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Neoplasias Renales/genética , Leiomiomatosis/genética , Pérdida de Heterocigocidad , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Síndromes Neoplásicos Hereditarios/genética , Estudios Prospectivos , Sensibilidad y Especificidad , Ácido Succínico/metabolismo
6.
Carcinogenesis ; 32(3): 305-11, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21163887

RESUMEN

Frameshift mutations frequently accumulate in microsatellite-unstable colorectal cancers (MSI CRCs) typically leading to downregulation of the target genes due to nonsense-mediated messenger RNA decay. However, frameshift mutations that occur in the 3' end of the coding regions can escape decay, which has largely been ignored in previous works. In this study, we characterized nonsense-mediated decay-escaping frameshift mutations in MSI CRC in an unbiased, genome wide manner. Combining bioinformatic search with expression profiling, we identified genes that were predicted to escape decay after a deletion in a microsatellite repeat. These repeats, located in 258 genes, were initially sequenced in 30 MSI CRC samples. The mitotic checkpoint kinase TTK was found to harbor decay-escaping heterozygous mutations in exon 22 in 59% (105/179) of MSI CRCs, which is notably more than previously reported. Additional novel deletions were found in exon 5, raising the mutation frequency to 66%. The exon 22 of TTK contains an A(9)-G(4)-A(7) locus, in which the most common mutation was a mononucleotide deletion in the A(9) (c.2560delA). When compared with identical non-coding repeats, TTK was found to be mutated significantly more often than expected without selective advantage. Since TTK inhibition is known to induce override of the mitotic spindle assembly checkpoint (SAC), we challenged mutated cancer cells with the microtubule-stabilizing drug paclitaxel. No evidence of checkpoint weakening was observed. As a conclusion, heterozygous TTK mutations occur at a high frequency in MSI CRCs. Unexpectedly, the plausible selective advantage in tumourigenesis does not appear to be related to SAC.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorrectales/genética , Mutación del Sistema de Lectura/genética , Inestabilidad de Microsatélites , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático , Adenocarcinoma/patología , Anciano , Western Blotting , Neoplasias Colorrectales/patología , Biología Computacional , ADN de Neoplasias/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Técnicas para Inmunoenzimas , Masculino , Repeticiones de Microsatélite/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Proteínas Tirosina Quinasas , Células Tumorales Cultivadas
7.
Am J Pathol ; 177(4): 1969-76, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20709796

RESUMEN

Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been shown to predispose to pituitary adenoma predisposition, a condition characterized by growth hormone (GH)-secreting pituitary tumors. To study AIP-mediated tumorigenesis, we generated an Aip mouse model. Heterozygous mice developed normally but were prone to pituitary adenomas, in particular to those secreting GH. A complete loss of AIP was detected in these lesions, and full penetrance was reached at the age of 15 months. No excess of any other tumor type was found. Ki-67 analysis indicated that Aip-deficient tumors have higher proliferation rates compared with Aip-proficient tumors, suggesting a more aggressive disease. Similar to human AIP-deficient pituitary adenomas, immunohistochemical studies showed that expression of aryl hydrocarbon receptor nuclear translocator 1 or 2 (ARNT or ARNT2) protein was lost in the mouse tumors, suggesting that mechanisms of AIP-related tumorigenesis involve aberrant ARNT function. The Aip(+/-) mouse appears to be an excellent model for the respective human disease phenotype. This model constitutes a tool to further study AIP-associated pituitary tumorigenesis and may be potentially valuable in efforts to develop therapeutic strategies to treat pituitary adenomas.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Adenoma Hipofisario Secretor de Hormona del Crecimiento/etiología , Adenoma Hipofisario Secretor de Hormona del Crecimiento/patología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Western Blotting , Proliferación Celular , Femenino , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Humanos , Técnicas para Inmunoenzimas , Pérdida de Heterocigocidad , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Genes Chromosomes Cancer ; 48(7): 544-51, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19373782

RESUMEN

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a tumor predisposition syndrome with cutaneous and uterine leiomyomatosis as well as renal cell cancer (RCC) as its clinical manifestations. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (fumarase) gene. In this study, we used array comparative genomic hybridization to identify the specific copy number changes characterizing the HLRCC-associated RCCs. The study material comprised formalin-fixed paraffin-embedded renal tumors obtained from Finnish patients with HLRCC. All 11 investigated tumors displayed the papillary type 2 histopathology typical for HLRCC renal tumors. The most frequent copy number changes detected in at least 3/11 (27%) of the tumors were gains in chromosomes 2, 7, and 17, and losses in 13q12.3-q21.1, 14, 18, and X. These findings provide genetic evidence for a distinct copy number profile in HLRCC renal tumors compared with sporadic RCC tumors of the same histopathological subtype, and delineate chromosomal regions that associate with this very aggressive form of RCC.


Asunto(s)
Carcinoma de Células Renales/genética , Dosificación de Gen , Neoplasias Renales/genética , Leiomiomatosis/genética , Adulto , Anciano , Aberraciones Cromosómicas , Hibridación Genómica Comparativa , Femenino , Eliminación de Gen , Humanos , Masculino , Persona de Mediana Edad , Mutagénesis Insercional
9.
Hum Pathol ; 38(5): 793-6, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17270241

RESUMEN

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a tumor predisposition syndrome caused by mutations in the fumarate hydratase (FH) gene. HLRCC is characterized by uterine and cutaneous leiomyomas, renal cell cancer, and uterine leiomyosarcoma. Typically, renal cell cancers in HLRCC are unilateral and display a papillary type 2 or ductal histology. We describe here a 23-year-old patient carrying a novel FH mutation (N330S) with a bilateral renal cell center. Carcinoma of the right kidney showed papillary structure, but the left tumor was diagnosed as a conventional (clear cell) renal carcinoma, a type not previously described in HLRCC. The clear cell renal carcinoma also displayed loss of the normal FH allele and the FH immunostaining. Our finding extends the number of cases in which HLRCC can be suspected, and the FH immunohistochemistry may serve as a useful tool to screen for HLRCC in young individuals with clear cell renal carcinoma.


Asunto(s)
Carcinoma de Células Renales/genética , Fumarato Hidratasa/genética , Neoplasias Renales/genética , Mutación , Neoplasias Primarias Múltiples/diagnóstico , Neoplasias Uterinas/diagnóstico , Adulto , Secuencia de Bases , Carcinoma de Células Renales/cirugía , Femenino , Predisposición Genética a la Enfermedad , Humanos , Hallazgos Incidentales , Neoplasias Renales/cirugía , Leiomioma/diagnóstico
10.
Gene Expr ; 14(2): 59-69, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18257390

RESUMEN

Fumarate hydratase (FH) is an enzyme of the mitochondrial tricarboxylic acid cycle (TCAC). Here we report the characterization of a novel FH variant (FHv) that contains an alternative exon 1b, thus lacking the mitochondrial signal sequence. Distinct from mitochondrial FH, FHv localized to cytosol and nucleus and lacked FH enzyme activity. FHv was expressed ubiquitously in human fetal and adult tissues. Heat shock and prolonged hypoxia increased FHv expression in a cell line (HTB 115) by nine- and fourfold, respectively. These results suggest that FHv has an alternative function outside the TCAC related to cellular stress response.


Asunto(s)
Fumarato Hidratasa/genética , Regulación de la Expresión Génica , Estrés Fisiológico/genética , Secuencia de Bases , Western Blotting , Línea Celular , ADN Complementario , Técnica del Anticuerpo Fluorescente , Humanos , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Fracciones Subcelulares/enzimología
11.
Fam Cancer ; 10(2): 397-411, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21404119

RESUMEN

Hereditary leiomyomatosis and renal cell cancer (HLRCC, also known as multiple cutaneous and uterine leiomyomatosis, MCUL) is a highly penetrant autosomal dominant tumor predisposition syndrome characterized by benign leiomyomas of the skin and the uterus. Renal cell carcinomas, occurring in a subset of the HLRCC families, are exceptionally aggressive. Therefore careful, frequent surveillance strategies are recommended. Association of malignant smooth-muscle tumors, leiomyosarcomas, with HLRCC has been observed but the risk appears to be smaller than initially estimated. To date inactivating heterozygous mutations in the fumarate hydratase (FH, fumarase) gene, predisposing to HLRCC, have been found in approximately 180 families worldwide. The most extensively studied hypothesis on molecular mechanisms of HLRCC tumorigenesis is activation of the hypoxia pathway due to aberrant stabilization of the HIF1 transcription factor. HIF1 regulates transcription of genes relevant for vascularization, glucose transport and glycolysis, processes that facilitate tumor growth. However, additional mechanisms underlying tumor formation are likely to exist.


Asunto(s)
Neoplasias Renales/genética , Leiomiomatosis/congénito , Femenino , Fumarato Hidratasa/genética , Asesoramiento Genético , Heterocigoto , Humanos , Factor 1 Inducible por Hipoxia/genética , Neoplasias Renales/diagnóstico , Neoplasias Renales/etiología , Neoplasias Renales/terapia , Leiomiomatosis/diagnóstico , Leiomiomatosis/etiología , Leiomiomatosis/genética , Leiomiomatosis/terapia , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas/genética , Neoplasias Uterinas/genética
12.
Science ; 334(6053): 252-5, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21868628

RESUMEN

Uterine leiomyomas, or fibroids, are benign tumors that affect millions of women worldwide and that can cause considerable morbidity. To study the genetic basis of this tumor type, we examined 18 uterine leiomyomas derived from 17 different patients by exome sequencing and identified tumor-specific mutations in the mediator complex subunit 12 (MED12) gene in 10. Through analysis of 207 additional tumors, we determined that MED12 is altered in 70% (159 of 225) of tumors from a total of 80 patients. The Mediator complex is a 26-subunit transcriptional regulator that bridges DNA regulatory sequences to the RNA polymerase II initiation complex. All mutations resided in exon 2, suggesting that aberrant function of this region of MED12 contributes to tumorigenesis.


Asunto(s)
Leiomioma/genética , Complejo Mediador/genética , Neoplasias Uterinas/genética , Codón , Exones , Femenino , Perfilación de la Expresión Génica , Humanos , Mutación INDEL , Intrones , Leiomioma/metabolismo , Mutación , Mutación Missense , Transducción de Señal , Neoplasias Uterinas/metabolismo
13.
Mol Cancer Res ; 8(7): 952-60, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20551151

RESUMEN

The circadian clock regulates daily variations in physiologic processes. CLOCK acts as a regulator in the circadian apparatus controlling the expression of other clock genes, including PER1. Clock genes have been implicated in cancer-related functions; in this work, we investigated CLOCK as a possible target of somatic mutations in microsatellite unstable colorectal cancers. Combining microarray gene expression data and public gene sequence information, we identified CLOCK as 1 of 790 putative novel microsatellite instability (MSI) target genes. A total of 101 MSI colorectal carcinomas (CRC) were sequenced for a coding microsatellite in CLOCK. The effect of restoring CLOCK expression was studied in LS180 cells lacking wild-type CLOCK by stably expressing GST-CLOCK or glutathione S-transferase empty vector and testing the effects of UV-induced apoptosis and radiation by DNA content analysis using flow cytometry. Putative novel CLOCK target genes were searched by using ChIP-seq. CLOCK mutations occurred in 53% of MSI CRCs. Restoring CLOCK expression in cells with biallelic CLOCK inactivation resulted in protection against UV-induced apoptosis and decreased G(2)-M arrest in response to ionizing radiation. Using ChIP-Seq, novel CLOCK-binding elements were identified near DNA damage genes p21, NBR1, BRCA1, and RAD50. CLOCK is shown to be mutated in cancer, and altered response to DNA damage provides one plausible mechanism of tumorigenesis.


Asunto(s)
Adenocarcinoma/genética , Proteínas CLOCK/genética , Neoplasias Colorrectales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular Tumoral , Mutación del Sistema de Lectura , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Mutación
14.
Cancer Genet Cytogenet ; 183(2): 83-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18503824

RESUMEN

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a syndrome predisposing to cutaneous and uterine leiomyomatosis as well as renal cell cancer and uterine leiomyosarcoma. Heterozygous germline mutations in the fumarate hydratase (FH, fumarase) gene are known to cause HLRCC. On occasion, no FH mutation is detected by direct sequencing, despite the evident HLRCC phenotype in a family. In the present study, to investigate whole gene or exonic deletions and amplifications in FH mutation-negative patients, we used multiplex ligation-dependent probe amplification technology. The study material comprised 7 FH mutation-negative HLRCC patients and 12 patients affected with HLRCC-associated phenotypes, including papillary RCC, early-onset RCC, uterine leiomyomas, or uterine leiomyosarcoma. A novel FH mutation, a deletion of FH exon 1 that encodes the mitochondrial signal peptide, was detected in one of the HLRCC patients (1/7). The patient with the FH mutation displayed numerous painful cutaneous leiomyomas and papillary type renal cell cancer. Our finding, together with the two patients with whole FH gene deletion who had been detected previously, suggests that exonic or whole-gene FH deletions are not a frequent cause of HLRCC syndrome.


Asunto(s)
Carcinoma de Células Renales/genética , Exones , Fumarato Hidratasa/genética , Leiomiomatosis/genética , Mutación , Eliminación de Secuencia , Secuencia de Bases , Cartilla de ADN , Humanos , Reacción en Cadena de la Ligasa
15.
Int J Cancer ; 121(6): 1386-9, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17520677

RESUMEN

Germline mutations in nuclear genes encoding mitochondrial enzymes fumarate hydratase (FH) and succinate dehydrogenase (subunits SDHB/C/D) have been implicated in the development of tumor syndromes referred to as hereditary leiomyomatosis and renal cell cancer (HLRCC) and hereditary paragangliomatosis (HPGL), respectively. FH and SDH are operating in the tricarboxylic acid cycle (the TCA cycle, the Krebs cycle). In the FH and SDH deficient tumors, accumulation of the substrates, fumarate and succinate, has been shown to cause stabilization of hypoxia inducible factor 1 alpha (HIF1 alpha). According to recent studies, HIF1 alpha could contribute to the hypoxia induced genomic instability seen in many cancers, through repression of mismatch repair (MMR) protein MSH2. In this study, in agreement with previous works, we found HIF1 alpha to be moderately or highly stabilized in 67% (16/24) and 77% (48/62) of HLRCC tumors and SDHB/C/D paragangliomas (PGL) and pheochromocytomas (PHEO), respectively. In addition, a set of 54 other familial and nonfamilial PGLs/PHEOs were studied. Moderately or highly stabilized HIF1 alpha was present in 68% (26/38) of the PGLs but in PHEOs (n = 16) no such pattern was observed. We then analyzed the suggested link between HIF1 alpha stabilization and MSH2 repression, in HLRCC and HPGL tumor material. No microsatellite instability (MSI) or lack of MSH2 expression was, however, observed. Thus we failed to provide in vivo evidence for the proposed link between HIF1 alpha stabilization and functional MMR deficiency, in TCAC deficient tumors.


Asunto(s)
Fumarato Hidratasa/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inestabilidad de Microsatélites , Síndromes Neoplásicos Hereditarios/genética , Succinato Deshidrogenasa/deficiencia , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Ciclo del Ácido Cítrico/fisiología , Fumarato Hidratasa/genética , Mutación de Línea Germinal , Humanos , Inmunohistoquímica , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Leiomiomatosis/genética , Leiomiomatosis/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Síndromes Neoplásicos Hereditarios/metabolismo , Paraganglioma/genética , Paraganglioma/metabolismo , Feocromocitoma/genética , Feocromocitoma/metabolismo , Succinato Deshidrogenasa/genética , Análisis de Matrices Tisulares
16.
Prostate ; 66(11): 1144-50, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16652384

RESUMEN

BACKGROUND: Amplification and overexpression of EIF3S3 gene has been demonstrated in breast and prostate cancer. Here, our goal was to study the effect of EIF3S3 on cell growth. METHODS: The effect of EIF3S3 on growth of NIH 3T3 murine fibroblasts as well as breast (SK-Br-3 and ZR-75-1) and prostate (PC-3 and LNCaP) cancer cell lines was examined by using transfection with inducible pTet-Off system and siRNAs. RESULTS: NIH 3T3 cells with overexpression of EIF3S3 grew significantly faster than cells transfected with empty vector and survived longer when grown in soft agar. The EIF3S3 overexpression was associated with increased fraction of cells in S-phase and with phosphorylation of retinoblastoma (Rb) protein. siRNA treatment inhibited significantly (P = 0.0022) the growth of all breast and prostate cancer cell lines studied. CONCLUSIONS: The results suggest that EIF3S3 regulates cell growth and viability, and that overexpression of the gene may provide growth advantage to the cancer cells.


Asunto(s)
División Celular , Factor 3 de Iniciación Eucariótica/genética , Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Masculino , Ratones , Células 3T3 NIH , Fosforilación , ARN Interferente Pequeño/genética , Proteína de Retinoblastoma/metabolismo , Fase S , Transfección
17.
Int J Cancer ; 119(2): 283-7, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16477632

RESUMEN

Germline mutations in fumarate hydratase (FH) gene at 1q43 predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. In HLRCC, the most common clinical features are leiomyomas of the skin and uterus, and in a subset of the families, renal cell cancer (RCC) and uterine leiomyosarcoma (ULMS) occur frequently at young age. This study was conducted to evaluate the possible contribution of FH mutations in a population-based series of early onset (< or = 45 years) ULMSs. Eighty-one cases were identified through the national cancer registry, and samples from 67 cases (83%) were available for FH mutation screening and analysis of allelic imbalance (AI) at the FH locus. Seventeen percent of tumors showed AI. In the mutation analysis, a novel missense mutation K424R was found. The mutation was also found from the patient's normal tissue. To study whether this variant has functional consequences, FH enzyme activity assay was performed in a cell model. The activity of the mutated protein was significantly reduced as compared to wild type (p = 0.009). This study shows that FH germline mutations can occur in seemingly nonsyndromic cases of ULMS (1/67, 1.5%). It appears that on the population level hereditary FH defects do play a role in pathogenesis of sporadic early onset ULMSs, albeit rarely.


Asunto(s)
Fumarato Hidratasa/genética , Mutación de Línea Germinal , Leiomiosarcoma/enzimología , Leiomiosarcoma/genética , Mutación Missense , Neoplasias Uterinas/enzimología , Neoplasias Uterinas/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Desequilibrio Alélico , Secuencia de Aminoácidos , Arginina , Niño , Preescolar , Análisis Mutacional de ADN , ADN de Neoplasias/análisis , Femenino , Humanos , Lactante , Lisina , Masculino , Persona de Mediana Edad
18.
Hum Mol Genet ; 15(1): 97-103, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16319128

RESUMEN

Defects in mitochondrial enzymes predispose to severe developmental defects as well as tumorigenesis. Heterozygous germline mutations in the nuclear gene encoding fumarate hydratase (FH), an enzyme catalyzing the hydration of fumarate in the Krebs tricarboxylic acid cycle, cause hereditary leiomyomatosis and renal cell cancer; yet the connection between disruption of mitochondrial metabolic pathways and neoplasia remains to be discovered. We have used an expression microarray approach for studying differences in global gene expression pattern caused by mutations in FH. Seven uterine fibroids carrying FH mutations were compared with 15 fibroids with wild-type FH. The two groups showed markedly different expression profiles, and multiple differentially expressed genes were detected. The most significant increase in FH mutants was seen in the expression of carbohydrate metabolism- and glycolysis-related genes. Other significantly up-regulated gene categories in FH mutants were, for example, iron ion homeostasis and oxidoreduction. Genes with lower expression in FH-mutant fibroids belonged to groups such as extracellular matrix, cell adhesion, muscle development and cell contraction. We show that FH mutations alter significantly the expression profiles of fibroids, most strikingly increasing the expression of genes involved in glycolysis.


Asunto(s)
Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Perfilación de la Expresión Génica , Leiomioma/metabolismo , Western Blotting , Análisis por Conglomerados , Femenino , Finlandia , Humanos , Leiomioma/genética , Pérdida de Heterocigocidad , Análisis por Micromatrices , Mutación/genética , Análisis de Componente Principal , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA