Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36838508

RESUMEN

The water-gas shift (WGS) reaction is an important process in the hydrogen industry, and its catalysts are of vital importance for this process. However, it is still a great challenge to develop catalysts with both high activity and high stability. Herein, a series of high-purity Cu-Mn-Al hydrotalcites with high Cu content have been prepared, and the WGS performance of the Cu-Mn-Al catalysts derived from these hydrotalcites have been studied. The results show that the Cu-Mn-Al catalysts have both outstanding catalytic activity and excellent stability. The optimized Cu-Mn-Al catalyst has displayed a superior reaction rate of 42.6 µmolCO-1⋅gcat-1⋅s-1, while the CO conversion was as high as 96.1% simultaneously. The outstanding catalytic activities of the Cu-Mn-Al catalysts could be ascribed to the enriched interfaces between Cu-containing particles and manganese oxide particles, and/or abundant oxygen vacancies. The excellent catalytic stability of the Cu-Mn-Al catalysts may be benefitting from the low valence state of the manganese of manganese oxides, because the low valence manganese oxides have good anti-sintering properties and can stabilize oxygen vacancies. This study provides an example for the construction of high-performance catalysts by using two-dimensional hydrotalcite materials as precursors.


Asunto(s)
Oxígeno , Agua , Manganeso , Oxidación-Reducción , Temperatura , Óxidos
2.
Anal Chem ; 94(49): 17223-17231, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36449628

RESUMEN

This work proposed ratiometric fluorescence capillary sensing system-integrated molecular imprinting with highly sensitive and selective detection for two biological indicators of Parkinson's disease (homovanillic acid (HVA) and Al3+). In this research, the silicon carbon quantum dot and the near-infrared CdTe quantum dot as luminescence sources were doped to an imprinted layer, which was attached to the inner surface wall of an amino-functionalized capillary. The fluorescence emissions of the ratiometric fluorescence capillary-imprinted sensor at 434 and 707 nm were quenched by HVA, and only the fluorescence emission at 434 nm was quenched by Al3+. Ratiometric fluorescence capillary sensing system-integrated molecular imprinting was used to detect simultaneously HVA and Al3+ with linearity over 1.0 × 10-9-2.5 × 10-7 and 1.0 × 10-9-1.1 × 10-7 M, respectively. The sensor showcased detection limitations of 8.7 × 10-10 and 9.8 × 10-10 M, indicating that the ratiometric fluorescence capillary sensing system-integrated molecular imprinting had great potential application for detecting HVA and Al3+ in serum and urine samples. The ratiometric fluorescence capillary sensing system-integrated molecular imprinting achieved highly sensitive and selective detection of HVA and Al3+ with a microvolume test dosage of 18 µL, which provided a new way for early diagnosis and disease monitoring of Parkinson's disease.


Asunto(s)
Compuestos de Cadmio , Impresión Molecular , Enfermedad de Parkinson , Puntos Cuánticos , Humanos , Telurio , Biomarcadores Ambientales , Espectrometría de Fluorescencia , Enfermedad de Parkinson/diagnóstico , Colorantes Fluorescentes , Límite de Detección
3.
Talanta ; 278: 126402, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38924985

RESUMEN

Simultaneous detection of multiple biomarker levels is essential to improve the accuracy of early diagnosis. Introducing capillary will simplify procedure, less time, and reduce reagent consumption for point-of-care testing of biomarkers. Here, we developed a portable and controllable smartphone-integrated fluorescence capillary imprinted sensing platform for the accuracy visual detection of Crohn's disease biomarkers (lysozyme, Fe3+) using single-excitation/double-signal detection. A novel controllable capillary coating strategy was developed by static gas-driven coating method for synthesis uniform fluorescence capillary imprinted sensor (Si-CD/g-CdTe@MIP capillary sensor). When Fe3+ and lysozyme were added, the fluorescence intensity of Si-CD/g-CdTe@MIP capillary sensor was quenched at 426 nm and enhanced at 546 nm, respectively. This Si-CD/g-CdTe@MIP capillary sensor has high sensitivity and selectivity for quantification lysozyme and Fe3+ simultaneously with the detection limit of 0.098 nM and 0.20 nM, respectively. In addition, the smartphone-integrated Si-CD/g-CdTe@MIP capillary sensor was applied for the intelligent detection of lysozyme and Fe3+, in which the detection limit was calculated as 0.32 nM and 0.65 nM. The smartphone-integrated visual Si-CD/g-CdTe@MIP capillary sensor realized ultrasensitive microanalysis (18 µL/time) of biomarkers in health man and Crohn 's patients, providing a novel strategy for early diagnosis of Crohn 's disease.


Asunto(s)
Biomarcadores , Enfermedad de Crohn , Muramidasa , Enfermedad de Crohn/diagnóstico , Humanos , Biomarcadores/análisis , Muramidasa/análisis , Fluorescencia , Teléfono Inteligente , Límite de Detección , Impresión Molecular , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
4.
Anal Chim Acta ; 1260: 341174, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121650

RESUMEN

The abuse of multiple antibiotics and anti-inflammatory drugs can harm the ecological environment and human health. Herein, a smartphone-integrated tri-color fluorescence sensing platform based on acid-sensitive fluorescence imprinted polymers was proposed for dual-mode visual intelligent detection of ibuprofen (IP), chloramphenicol (CAP), and florfenicol (FF). In this research, the dual-mode of tri-color ratiometric fluorescence imprinted sensor (TC-FMIPs) was realized at different pH environments for the detection IP, CAP, and FF. The fluorescence peak at 551 nm of TC-FMIPs was quenched in the presence of IP solution and fluorescence peak at 687 nm was quenched in the presence of CAP phosphate buffer solution (PBS, pH 7.0), while the fluorescence peak at 433 nm kept stable. Interestingly, the TC-FMIPs has a peroxidase-like activity, in which a new fluorescence peak at 561 nm was quenched and the fluorescence peak at 433 nm increased gradually with the addition of FF solution in pH 4.0 PBS. The TC-FMIPs showed a low detection limit of 10 pM, 8.5 pM, and 5.5 nM for IP, CAP, and FF, respectively. Additionally, a smartphone was used to capture of fluorescence colors and read out the RGB values for intelligent detection of IP, CAP, and FF, in which the detection limit was calculated as 15 pM, 12 pM and 7 nM toward IP, CAP and FF, respectively. The smartphone-integrated tri-color fluorescence sensing platform was developed for dual-mode visual intelligent detection of IP, CAP and FF successfully, which provided a new strategy for multi-target detection in the complex environment.


Asunto(s)
Cloranfenicol , Impresión Molecular , Humanos , Ibuprofeno , Polímeros , Teléfono Inteligente
5.
Sci Total Environ ; 856(Pt 1): 159073, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179841

RESUMEN

Establishment of a rapid, sensitive, visual, accurate and low-cost fluorescence detection system to detect multiple targets was of great significance in food safety evaluation, ecological environment monitoring and human health monitoring. In this work, a smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor was proposed based on metal-organic framework (NH2-MIL-101(Fe)) and CdTe quantum dots (CdTe QDs) for visual detection of mercury ions (Hg2+) and L-penicillamine (L-PA), in which NH2-MIL-101(Fe) was used as the reference signal and CdTe QDs was used as the response signal. The down-conversion fluorescence system at excitation wavelength of 300 nm (ex: 330 nm) was used to detect Hg2+ and L-PA, in which the detection limit of Hg2+ was 0.053 nM with the fluorescence color changed from green to blue, and the detection limit of L-PA was 1.10 nM with the fluorescence color changed from blue to green. Meanwhile, the up-conversion fluorescence system at excitation wavelength of 700 nm (ex: 700 nm) was used to detect Hg2+ and L-PA. The detection limits of Hg2+ and L-PA were 0.11 nM and 2.93 nM, respectively. The detection of Hg2+ and L-PA were also carried out based on the color extraction RGB values identified by the smartphone with a detection limit of 0.091 nM for Hg2+ and 8.97 nM for L-PA. In addition, the concentrations of Hg2+ and L-PA were evaluated by three-dimensional dynamic analysis in complex environments. The smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor system provides a new strategy for detection Hg2+ and L-PA in food safety evaluation, environmental monitoring and human health monitoring.


Asunto(s)
Compuestos de Cadmio , Mercurio , Puntos Cuánticos , Humanos , Mercurio/análisis , Telurio , Penicilamina , Teléfono Inteligente , Colorantes Fluorescentes , Límite de Detección , Espectrometría de Fluorescencia/métodos , Iones
6.
Environ Sci Pollut Res Int ; 25(18): 17425-17433, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29656353

RESUMEN

Taro stalks (TS) were modified by diethylenetriamine (DETA) to obtain the modified taro stalks adsorbents (recorded as MTSA). This kind of raw material is unprecedented and the method of modification is relatively simple. The physicochemical properties of MTSA were characterized by scanning electron microscope (SEM), FTIR, and zeta potential analyzer. The capacity of MTSA for adsorbing heavy metals under different influencing factors was tested by UV-visible spectrophotometer. The results indicated that the gaps between the microspheres of MTSA are more, which are conducive to adsorption. The MTSA might have increased the amino-functional groups which are beneficial for adsorption, resulting in an increase in the adsorption capacity of copper and nickel ions (35.71 and 31.06 mg/g) of about 5-7 times compared to bare taro stalks (5.27 mg/g and 6.08 mg/g). High Cu2+ uptake on MTSA was observed over the pH range of 5.5-7.0, while for Ni2+ the range was 7.0-8.5, and the optimum dosage of adsorbent were both about 0.80 g for Cu2+ and Ni2+. The adsorption kinetics of Cu2+ and Ni2+ on MTSA could be interpreted with a pseudo-second order and the equilibrium data were best described by the Langmuir isotherm model. Graphical abstract ᅟ.


Asunto(s)
Cobre/química , Metales Pesados/química , Níquel/química , Poliaminas/química , Adsorción , Colocasia , Cinética , Soluciones , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA