Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Med Chem ; 275: 116580, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38896994

RESUMEN

A new series of racemic fluorescent octahydrophenazines (rac-PZ1-11) have been designed and synthesized via the efficient nucleophilic aromatic substitution (SNAr) of tetrafluorobenzenedinitriles (1a-c) and racemic cyclohexane-1,2-diamines (rac-2a and b). The bioactivities of these racemic rac-PZs (20 µM) against herpes simplex virus type-1 (HSV-1) were evaluated by the relative cell viability of Vero cells infected with HSV-1. It was found that rac-PZ3 shows much higher anti-HSV-1 activity than others, with EC50 = 9.2 ± 1.4 µM. Further investigation into the anti-HSV activities of rac-PZ3 and its enantiomers RR- and SS-PZ3 indicates that rac-PZ3 can also efficiently inhibit HSV-2 and even ACV-resistant HSV-2 (EC50 = 11.0 ± 2.3 and 14.9 ± 2.8 µM, respectively), SS-PZ3 has better activities against HSV-1, HSV-2 and ACV-resistant HSV-2 (EC50 = 4.1 ± 1.1, 5.8 ± 1.0 and 7.9 ± 1.2 µM, respectively), but RR-PZ3 has almost no antiviral activities. The primary mechanism study indicates that rac-PZ3 efficiently reverses the HSV-1/2-induced cytopathic effect and suppresses the expression of viral mRNA and proteins. In addition, rac-, RR- and SS-PZ3 possess excellent fluorescence properties with almost the same emission wavelength and high fluorescence quantum yields (ΦF = 90.3-92.3 % in cyclohexane solutions and 54.4-57.3 % in solids) and can target endoplasmic reticulum and cell membrane. The efficient anti-HSV bioactivities and excellent fluorescence of PZ3 prove its potential applications in antiviral therapy and biological imaging.


Asunto(s)
Antivirales , Herpesvirus Humano 1 , Herpesvirus Humano 2 , Animales , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Colorantes Fluorescentes/síntesis química , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 2/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piperazinas/farmacología , Piperazinas/química , Piperazinas/síntesis química , Relación Estructura-Actividad , Células Vero
2.
Acta Pharm Sin B ; 14(3): 1362-1379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486996

RESUMEN

Extracellular vesicles (EVs) have recently emerged as a promising delivery platform for CRISPR/Cas9 ribonucleoproteins (RNPs), owing to their ability to minimize off-target effects and immune responses. However, enhancements are required to boost the efficiency and safety of Cas9 RNP enrichment within EVs. In response, we employed the Fc/Spa interaction system, in which the human Fc domain was fused to the intracellular domain of PTGFRN-Δ687 and anchored to the EV membrane. Simultaneously, the B domain of the Spa protein was fused to the C domain of cargos such as Cre or spCas9. Due to the robust interaction between Fc and Spa, this method enriched nearly twice the amount of cargo within the EVs. EVs loaded with spCas9 RNP targeting the HSV1 genome exhibited significant inhibition of viral replication in vitro and in vivo. Moreover, following neuron-targeting peptide RVG modification, the in vivo dosage in neural tissues substantially increased, contributing to the clearance of the HSV1 virus in neural tissues and exhibiting a lower off-target efficiency. These findings establish a robust platform for efficient EV-based SpCas9 delivery, offering potential therapeutic advantages for HSV1 infections and other neurological disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA