Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35805849

RESUMEN

During urbanization in developing countries, fragmentation of green infrastructure due to increasing populations and the expansion of construction land leads to an extremely serious imbalance between the supply and demand for urban ecosystem services. In this study, the central city of Zhengzhou, a central city in central China, was selected as the study area and the excessive demand for six ecosystem services, namely, air purification, flood regulation, heat regulation, hydrological regulation, CO2 sequestration and recreational services, was quantitatively evaluated. The entropy method was used to calculate the weights of various ecosystem services, and spatial overlay analysis was performed to obtain the comprehensive ecosystem service excessive demand. Finally, bivariate spatial autocorrelation analysis was used to explore the response of population density to comprehensive excessive demand for ESs. The results of this study indicate that: (1) The most prevalent need is for more CO2 regulation service throughout the study area. (2) Except for hydrological regulation service, the spatial distribution of the remaining highly excessive ecosystem service demands are mostly concentrated in old neighborhoods. (3) Of the six excessively demanded economic services, rainwater regulation obtained the greatest weight, reflecting the poor urban infrastructure configuration for countering the rapidly increasing threat of flooding caused by climate change in the city. (4) The comprehensive ecosystem service excessive demand results show that there are eight priority green infrastructure implementation blocks in the central city of Zhengzhou. (5) There were three agglomeration types between population density and comprehensive excessive demand for ESs: high-high type, low-high type and low-low type. The spatial distribution characteristics of population density and comprehensive ES demand are positively correlated. The results of this study could help to provide information for decision making when delineating the priority areas and types of green infrastructure implementation in developing cities.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Dióxido de Carbono , China , Ciudades , Conservación de los Recursos Naturales/métodos , Urbanización
2.
Funct Plant Biol ; 46(5): 417-427, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30940329

RESUMEN

Interspecific hybridisation is the main method for improvement and breeding of tree peony (Paeonia ostii T.Hong & J.X.Zhang), but cross-incompatibility as the major factor restricting the rapid development of interspecific hybridisation. To better understand the molecular mechanisms involved in cross-incompatibility between tree peony (Paeonia ostii cv. Fengdanbai) and herbaceous peony (Paeonia lactiflora Pall. cv. Fenyunu), a quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) technology was performed on the stigma 24h after pollination. Of the 2900 proteins whose levels were quantitated, 685 proteins were differentially expressed in the stigma after hybrid pollination, in contrast to self-pollination. Functional annotation analysis showed that dysregulated proteins involved in RNA degradation, the Ca signalling pathway, the phosphatidylinositol signalling system and the mitogen-activated protein kinase (MAPK) signalling pathway may have made contributions to cross-incompatibility. The downregulated expression of enolase, DnaK (Heat Shock Proteins, HSP70), GroEL (Heat Shock Proteins, HSP60), calmodulin and glyoxalase I, and the upregulated expression of adenine nucleotide translocator indicated that the energy synthesis required by pollen tube growth, the signal pathway and the metabolic pathway related to the growth polarity of the pollen tube were blocked after hybrid pollination. Eight genes were selected to confirm their expression by quantitative real-time PCR. Compared with the STRING database, a protein-protein interaction network of the chosen proteins was constructed. These results provide fundamental and important information for research into the molecular mechanisms of cross-incompatibility in peony and should facilitate interspecific hybridisation in agricultural practice.


Asunto(s)
Paeonia , Flores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteómica , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA