Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 22(4): 400-12, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10700659

RESUMEN

Although the pathophysiology of schizophrenia remains unclear, behavioral effects in humans induced by N-methyl-D-aspartate (NMDA) antagonists, such as ketamine, provide direction for formulating new pharmacologic models of the illness. The purpose of the present study was to clarify the roles of NMDA receptor antagonism, as well as dopamine-releasing properties of ketamine, in regional brain metabolic activity and behavioral responses in mice. The effects of acute administration of ketamine (30 mg/kg, i.p.) were compared with those of the more selective non-competitive NMDA antagonist MK-801 (0.3 and 0.5 mg/kg, i.p.), and amphetamine (4 mg/kg, i.p.) on regional brain [14C]-2-deoxyglucose (2-DG) uptake, by using a high resolution autoradiographic technique in the freely moving mice. Both ketamine and MK-801 induced substantial and similar neuroanatomically selective alterations in regional 2-DG uptake. Remarkable increases in 2-DG uptake in response to the NMDA antagonists were seen in limbic cortical regions, hippocampal formation, nucleus accumbens, select thalamic nuclei, and basolateral amygdala. The behavior of mice given amphetamine was similar to that of mice given MK-801. However, the brain activity patterns induced by amphetamine were distinctly different from those observed after ketamine and MK-801 treatment. These results suggest that generalized behavioral activation and increased dopamine release are insufficient to account for the ketamine-induced alterations in regional brain metabolism, and that the effects of ketamine on 2-DG uptake are likely related to a reduction in NMDA receptor function. The data also suggest that ketamine-induced changes in 2-DG uptake may provide a useful paradigm for translational research to better understand the pathophysiology of schizophrenia.


Asunto(s)
Anfetamina/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Desoxiglucosa/metabolismo , Maleato de Dizocilpina/farmacología , Ketamina/farmacología , Animales , Autorradiografía , Conducta Animal/efectos de los fármacos , Circulación Cerebrovascular , Masculino , Ratones , Ratones Endogámicos ICR , Actividad Motora/efectos de los fármacos
2.
Brain Res ; 843(1-2): 171-83, 1999 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-10528123

RESUMEN

Subanesthetic doses of NMDA receptor antagonists induce positive, negative and cognitive schizophrenia-like symptoms in healthy humans and precipitate psychotic reactions in stabilized schizophrenic patients. These findings suggest that defining neurobiologic effects induced by NMDA antagonists could guide the formulation of experimental models relevant to the pathophysiology of schizophrenia and antipsychotic drug action. Accordingly, the effects of subanesthetic doses of the non-competitive NMDA antagonists ketamine and MK-801 were examined on regional brain [14C]-2-deoxyglucose (2-DG) uptake in rats. The effects of these drugs were compared to those of amphetamine, in order to assess the potential role of generalized behavioral arousal, motor activity and dopamine release in brain metabolic responses to the NMDA antagonists. Subanesthetic doses of MK-801 and ketamine induced identical alterations in patterns of 2-DG uptake. The most pronounced increases in 2-DG for both NMDA antagonists were in the hippocampal formation and limbic cortical regions. By contrast, amphetamine treatment did not increase 2-DG uptake in these regions. In isocortical regions, ketamine and MK-801 reduced uptake in layers 3 and 4, creating a striking shift in the laminar pattern of 2-DG uptake in comparison to control conditions. After amphetamine, the fundamental laminar pattern of isocortical labeling was similar to saline-treated rats. Administration of ketamine and MK-801 decreased 2-DG uptake in the medial geniculate and inferior colliculus, whereas amphetamine tended to increase uptake in these regions. Since ketamine induced similar effects on regional 2-DG uptake as observed for the selective antagonists MK-801, the effects of ketamine are likely related to NMDA antagonistic properties of the drug. The distinct differences in brain 2-DG uptake induced by amphetamine and NMDA antagonists indicate that generalized behavioral arousal, and increased locomotor activity mediated by dopamine release, are not sufficient to account for the alterations in brain metabolic patterns induced by ketamine and MK-801. Thus, the dramatic alteration in regional 2-DG uptake induced by ketamine and MK-801 reflects a state selectively induced by reduced NMDA receptor function.


Asunto(s)
Anfetamina/farmacología , Encéfalo/metabolismo , Desoxiglucosa/farmacocinética , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Autorradiografía , Transporte Biológico , Encéfalo/efectos de los fármacos , Radioisótopos de Carbono/farmacocinética , Relación Dosis-Respuesta a Droga , Masculino , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley , Valores de Referencia , Distribución Tisular
3.
Brain Res ; 812(1-2): 65-75, 1998 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-9813244

RESUMEN

Subanesthetic doses of N-methyl-d-aspartate (NMDA) receptor antagonists such as ketamine and phencyclidine precipitate psychotic symptoms in schizophrenic patients. In addition, these drugs induce a constellation of behavioral effects in healthy individuals that resemble positive, negative, and cognitive symptoms of schizophrenia. Such findings have led to the hypothesis that decreases in function mediated by NMDA receptors may be a predisposing, or even causative, factor in schizophrenia. The present study examined the effects of the representative atypical (clozapine) and typical (haloperidol) antipsychotic drugs on ketamine- induced increases in [14C]-2-deoxyglucose (2-DG) uptake in the rat brain. As previously demonstrated, administration of subanesthetic doses of ketamine increased 2-DG uptake in specific brain regions, including medial prefrontal cortex, retrosplenial cortex, hippocampus, nucleus accumbens, basolateral amygdala, and anterior ventral thalamic nucleus. Pretreatment of rats with 5 or 10 mg/kg clozapine alone produced minimal or no change in 2-DG uptake, yet clozapine completely blocked ketamine-induced changes in 2-DG uptake in all brain regions studied. In striking contrast, a dose of haloperidol (0.5 mg/kg) that produces a substantial cataleptic response, potentiated, rather than blocked, ketamine-induced activation of 2-DG uptake. These results demonstrate, in a model with potential relevance to schizophrenia, a striking neurobiological difference between the actions of prototypical typical and atypical antipsychotic drugs. The dramatic blockade by clozapine of ketamine-induced brain metabolic activation suggests that antagonism of the consequences of reduced NMDA receptor function could contribute to the superior therapeutic effects of this atypical antipsychotic agent. The results also suggest that this model of ketamine-induced alterations in 2-DG uptake may be extremely useful for understanding the complex neural mechanisms of atypical antipsychotic drug action.


Asunto(s)
Antipsicóticos/farmacología , Encéfalo/efectos de los fármacos , Clozapina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Haloperidol/farmacología , Ketamina/farmacología , Animales , Autorradiografía , Encéfalo/metabolismo , Desoxiglucosa/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
4.
J Pharmacol Exp Ther ; 293(1): 8-14, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10734147

RESUMEN

The ability of subanesthetic doses of N-methyl-D-aspartate (NMDA) antagonists to induce positive, negative, and cognitive schizophrenia-like symptoms suggests that reduced NMDA receptor function may contribute to the pathophysiology of schizophrenia. An increasing body of evidence indicates that antipsychotic drugs, especially those with "atypical" properties, can antagonize the effects of NMDA antagonists in a variety of experimental paradigms. We demonstrated previously that clozapine, the prototype of atypical antipsychotics, but not haloperidol, the typical antipsychotic, blocked ketamine-induced alterations in brain metabolism. In this study, effects of clozapine were compared with two of the newer atypical antipsychotic drugs, risperidone and olanzapine, on ketamine-induced alterations in regional [(14)C]2-deoxyglucose (2-DG) uptake. A subanesthetic dose of ketamine (25 mg/kg) induced robust increases in 2-DG uptake in limbic cortical regions, hippocampal formation, nucleus accumbens, and basolateral amygdala. Pretreatment of rats with risperidone (0.3 mg/kg) before ketamine administration did not alter the effects of ketamine. These data suggest that novel pharmacological properties may contribute to the effects of clozapine in this model, in addition to the well characterized actions at D(2) and 5HT(2A) receptors. In contrast to the results with risperidone, olanzapine blocked ketamine-induced increases in 2-DG uptake. However, a higher dose of olanzapine (10 mg/kg) was required to completely block the effects of ketamine than would be expected if D(2) and 5HT(2) receptor blocking properties of the drug were solely responsible for its action. The results suggest that the ketamine challenge 2-DG paradigm may be a useful model to identify antipsychotic drugs with atypical characteristics and to explore mechanisms of atypical antipsychotic action.


Asunto(s)
Antipsicóticos/farmacología , Química Encefálica/efectos de los fármacos , Clozapina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Pirenzepina/análogos & derivados , Risperidona/farmacología , Animales , Autorradiografía , Benzodiazepinas , Encéfalo/anatomía & histología , Desoxiglucosa/metabolismo , Masculino , Olanzapina , Pirenzepina/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA