Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem J ; 476(14): 2111-2125, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31285352

RESUMEN

In contrast with human hemoglobin (Hb) in red blood cells, plant Hbs do not transport oxygen, instead research points towards nitrogen metabolism. Using comprehensive and integrated biophysical methods we characterized three sugar beet Hbs: BvHb1.1, BvHb1.2 and BvHb2. Their affinities for oxygen, CO, and hexacoordination were determined. Their role in nitrogen metabolism was studied by assessing their ability to bind NO, to reduce nitrite (NiR, nitrite reductase), and to form nitrate (NOD, NO dioxygenase). Results show that BvHb1.2 has high NOD-like activity, in agreement with the high nitrate levels found in seeds where this protein is expressed. BvHb1.1, on the other side, is equally capable to bind NO as to form nitrate, its main role would be to protect chloroplasts from the deleterious effects of NO. Finally, the ubiquitous, reactive, and versatile BvHb2, able to adopt 'open and closed forms', would be part of metabolic pathways where the balance between oxygen and NO is essential. For all proteins, the NiR activity is relevant only when nitrite is present at high concentrations and both NO and oxygen are absent. The three proteins have distinct intrinsic capabilities to react with NO, oxygen and nitrite; however, it is their concentration which will determine the BvHbs' activity.


Asunto(s)
Beta vulgaris , Hemoglobinas , Óxido Nítrico , Nitritos , Nitrógeno , Proteínas de Plantas , Beta vulgaris/química , Beta vulgaris/genética , Beta vulgaris/metabolismo , Hemoglobinas/química , Hemoglobinas/genética , Hemoglobinas/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Nitritos/química , Nitritos/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Cell Physiol ; 55(4): 834-44, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24486763

RESUMEN

Biennial sugar beet (Beta vulgaris spp. vulgaris) is a Caryophyllidae that has adapted its growth cycle to the seasonal temperature and daylength variation of temperate regions. This is the first time a holistic study of the expression pattern of non-symbiotic hemoglobins (nsHbs) is being carried out in a member of this group and under two essential environmental conditions for flowering, namely vernalization and length of photoperiod. BvHb genes were identified by sequence homology searches against the latest draft of the sugar beet genome. Three nsHb genes (BvHb1.1, BvHb1.2 and BvHb2) and one truncated Hb gene (BvHb3) were found in the genome of sugar beet. Gene expression profiling of the nsHb genes was carried out by quantitative PCR in different organs and developmental stages, as well as during vernalization and under different photoperiods. BvHb1.1 and BvHb2 showed differential expression during vernalization as well as during long and short days. The high expression of BvHb2 indicates that it has an active role in the cell, maybe even taking over some BvHb1.2 functions, except during germination where BvHb1.2 together with BvHb1.1-both Class 1 nsHbs-are highly expressed. The unprecedented finding of a leader peptide at the N-terminus of BvHb1.1, for the first time in an nsHb from higher plants, together with its observed expression indicate that it may have a very specific role due to its suggested location in chloroplasts. Our findings open up new possibilities for research, breeding and engineering since Hbs could be more involved in plant development than previously was anticipated.


Asunto(s)
Beta vulgaris/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hemoglobinas/genética , Proteínas de Plantas/genética , Simbiosis/genética , Secuencia de Aminoácidos , Beta vulgaris/fisiología , Flores/genética , Flores/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Hemoglobinas/química , Hemoglobinas/metabolismo , Datos de Secuencia Molecular , Fotoperiodo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Alineación de Secuencia , Fracciones Subcelulares/metabolismo
4.
Antioxidants (Basel) ; 11(8)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36009334

RESUMEN

Phytoglobins (Pgbs) are plant-originating heme proteins of the globin superfamily with varying degrees of hexacoordination. Pgbs have a conserved cysteine residue, the role of which is poorly understood. In this paper, we investigated the functional and structural role of cysteine in BvPgb1.2, a Class 1 Pgb from sugar beet (Beta vulgaris), by constructing an alanine-substituted mutant (Cys86Ala). The substitution had little impact on structure, dimerization, and heme loss as determined by X-ray crystallography, size-exclusion chromatography, and an apomyoglobin-based heme-loss assay, respectively. The substitution significantly affected other important biochemical properties. The autoxidation rate increased 16.7- and 14.4-fold for the mutant versus the native protein at 25 °C and 37 °C, respectively. Thermal stability similarly increased for the mutant by ~2.5 °C as measured by nano-differential scanning fluorimetry. Monitoring peroxidase activity over 7 days showed a 60% activity decrease in the native protein, from 33.7 to 20.2 U/mg protein. When comparing the two proteins, the mutant displayed a remarkable enzymatic stability as activity remained relatively constant throughout, albeit at a lower level, ~12 U/mg protein. This suggests that cysteine plays an important role in BvPgb1.2 function and stability, despite having seemingly little effect on its tertiary and quaternary structure.

5.
Front Bioeng Biotechnol ; 10: 996224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263354

RESUMEN

We have studied a method for making microbial cells transparent by immersing them in a solution with a high refractive index (RI). When the RI of the solution was matching that of the cells, light scattering was greatly diminished (by a factor of up to about 100) and the cell suspension became transparent, facilitating the spectrophotometric determination of intracellular compounds such as hemoglobin. We investigated the properties of several compounds such as sucrose, glycerol, bovine serum albumin, FicollTM, and iodixanol (OptiprepTM), each with advantages and disadvantages. Particularly good overall properties were found for iodixanol at a concentration of around 36% (w/v) and bovine serum albumin at a concentration of about 30% (w/v). By using this RI-matching principle the production of intracellular compounds can easily be followed in near real-time during fermentation processes. For example, some conditions for producing plant hemoglobin in Escherichia coli were conveniently determined without the need of any cell disintegration or product purification.

6.
Biosci Rep ; 38(4)2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29802155

RESUMEN

Hemoglobin (Hb)-based oxygen carriers (HBOCs) have been engineered to replace or augment the oxygen carrying capacity of erythrocytes. However, clinical results have generally been disappointing, in part due to the intrinsic oxidative toxicity of Hb. The most common HBOC starting material is adult human or bovine Hb. However, it has been suggested that fetal Hb may offer advantages due to decreased oxidative reactivity. Large-scale manufacturing of HBOC will likely and ultimately require recombinant sources of human proteins. We, therefore, directly compared the functional properties and oxidative reactivity of recombinant fetal (rHbF) and recombinant adult (rHbA) Hb. rHbA and rHbF produced similar yields of purified functional protein. No differences were seen in the two proteins in: autoxidation rate; the rate of hydrogen peroxide reaction; NO scavenging dioxygenase activity; and the NO producing nitrite reductase activity. The rHbF protein was: less damaged by low levels of hydrogen peroxide; less damaging when added to human umbilical vein endothelial cells (HUVEC) in the ferric form; and had a slower rate of intrinsic heme loss. The rHbA protein was: more readily reducible by plasma antioxidants such as ascorbate in both the reactive ferryl and ferric states; less readily damaged by lipid peroxides; and less damaging to phosphatidylcholine liposomes. In conclusion in terms of oxidative reactivity, there are advantages and disadvantages to the use of rHbA or rHbF as the basis for an effective HBOC.


Asunto(s)
Sustitutos Sanguíneos/metabolismo , Hemoglobina Fetal/metabolismo , Hemoglobinas/metabolismo , Adulto , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Óxido Nítrico/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteínas Recombinantes/metabolismo
7.
Front Plant Sci ; 7: 2032, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119714

RESUMEN

The wild species field cress (Lepidium campestre), belonging to the Brassicaceae family, has potential to be developed into a novel oilseed- and catch crop, however, the species needs to be further improved regarding some important agronomic traits. One of them is its low oil content which needs to be increased. As far as we know there is no study aiming at increasing the oil content that has been reported in this species. In order to investigate the possibility to increase the seed oil content in field cress, we have tried to introduce the Arabidopsis WRINKLED1 (AtWRI1) or hemoglobin (Hb) genes from either Arabidopsis thaliana (AtHb2) or Beta vulgaris (BvHb2) into field cress with the seed specific expression. The hypothesis was that the oil content would be increased by overexpressing these target genes. The results showed that the oil content was indeed increased by up to 29.9, 20.2, and 25.9% in the transgenic lines expressing AtWRI1, AtHb2, and BvHb2, respectively. The seed oil composition of the transgenic lines did not significantly deviate from the seed oil composition of the wild type plants. Our results indicate that genetic modification can be used in this wild species for its fast domestication into a future economically viable oilseed and catch crop.

8.
Plant Sci ; 247: 138-49, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27095407

RESUMEN

Previous reports have connected non-symbiotic and truncated hemoglobins (Hbs) to metabolism of nitric oxide (NO), an important signalling molecule involved in wood formation. We have studied the capability of poplar (Populus tremula × tremuloides) Hbs PttHb1 and PttTrHb proteins alone or with a flavin-protein reductase to relieve NO cytotoxicity in living cells. Complementation tests in a Hb-deficient, NO-sensitive yeast (Saccharomyces cerevisiae) Δyhb1 mutant showed that neither PttHb1 nor PttTrHb alone protected cells against NO. To study the ability of Hbs to interact with a reductase, ferredoxin NADP(+) oxidoreductase PtthFNR was characterized by sequencing and proteomics. To date, by far the greatest number of the known dual-targeted plant proteins are directed to chloroplasts and mitochondria. We discovered a novel variant of hFNR that lacks the plastid presequence and resides in cytosol. The coexpression of PttHb1 and PtthFNR partially restored NO resistance of the yeast Δyhb1 mutant, whereas PttTrHb coexpressed with PtthFNR failed to rescue growth. YFP fusion proteins confirmed the interaction between PttHb1 and PtthFNR in plant cells. The structural modelling results indicate that PttHb1 and PtthFNR are able to interact as NO dioxygenase. This is the first report on dual targeting of central plant enzyme FNR to plastids and cytosol.


Asunto(s)
Ferredoxina-NADP Reductasa/metabolismo , Hemoglobinas/metabolismo , Óxido Nítrico/farmacología , Populus/enzimología , Cloroplastos/metabolismo , Citosol/metabolismo , Ferredoxina-NADP Reductasa/genética , Genes Reporteros , Mitocondrias/metabolismo , Mutación , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Proteómica , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA