Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33558292

RESUMEN

Global infections by non-tuberculous mycobacteria (NTM) are steadily rising. New drugs are needed to treat NTM infections, but the NTM drug pipeline remains poorly populated and focused on repurposing or reformulating approved antibiotics. We sought to accelerate de novo NTM drug discovery by testing advanced compounds with established activity against Mycobacterium tuberculosis 3-aminomethyl 4-halogen benzoxaboroles, a novel class of leucyl-tRNA synthetase inhibitors, were recently discovered as active against M. tuberculosis Here, we report that the benzoxaborole EC/11770 is not only a potent anti-tubercular agent but is active against the M. abscessus and M. avium complexes. Focusing on M. abscessus, which causes the most difficult-to-cure NTM disease, we show that EC/11770 retained potency against drug-tolerant biofilms in vitro and was effective in a mouse lung infection model. Resistant mutant selection experiments showed a low frequency of resistance and confirmed leucyl-tRNA synthetase as the target. This work establishes the benzoxaborole EC/11770 as a novel preclinical candidate for the treatment of NTM lung disease and tuberculosis and validates leucyl-tRNA synthetase as an attractive target for the development of broad-spectrum anti-mycobacterials.

2.
Antimicrob Agents Chemother ; 67(2): e0145922, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36688684

RESUMEN

The combination of the ß-lactam tebipenem and the ß-lactamase inhibitor avibactam shows potent bactericidal activity against Mycobacterium abscessus in vitro. Here, we report that the combination of the respective oral prodrugs tebipenem-pivoxil and avibactam ARX-1796 showed efficacy in a mouse model of M. abscessus lung infection. The results suggest that tebipenem-avibactam presents an attractive oral drug candidate pair for the treatment of M. abscessus pulmonary disease and could inform the design of clinical trials.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Modelos Animales de Enfermedad , Pulmón , Pruebas de Sensibilidad Microbiana
3.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748627

RESUMEN

DprE2 is an essential enzyme in the synthesis of decaprenylphosphoryl-ß-d-arabinofuranose (DPA) and subsequently arabinogalactan, and is a significant new drug target for M. tuberculosis. Two compounds from the GSK-177 box set, GSK301A and GSK032A, were identified through Mt-DprE2-target overexpression studies. The Mt-DprE1-DprE2 complex was co-purified and a new in vitro DprE2 assay developed, based on the oxidation of the reduced nicotinamide adenine dinucleotide cofactor of DprE2 (NADH/NADPH). The Mt-DprE1-DprE2 complex showed interesting kinetics in both the DprE1 resazurin-based assay, where Mt-DprE2 was found to enhance Mt-DprE1 activity and reduce substrate inhibition; and also in the DprE2 assay, which similarly exhibited substrate inhibition and a difference in kinetics of the two potential cofactors, NADH and NADPH. Although, no inhibition was observed in the DprE2 assay by the two GSK set compounds, spontaneous mutant generation indicated a possible explanation in the form of a pro-drug activation pathway, involving fgd1 and fbiC.


Asunto(s)
Mycobacterium tuberculosis , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , NAD/metabolismo , NADP/metabolismo , Antituberculosos/farmacología , Antituberculosos/metabolismo , Proteínas Bacterianas/química
4.
Antimicrob Agents Chemother ; 66(6): e0013222, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35607978

RESUMEN

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 µM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Macrófagos , Ratones , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
5.
Antimicrob Agents Chemother ; 65(12): e0151421, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34606340

RESUMEN

Fluoroquinolones-the only clinically used DNA gyrase inhibitors-are effective against tuberculosis (TB) but are in limited clinical use for nontuberculous mycobacteria (NTM) lung infections due to intrinsic drug resistance. We sought to test alternative DNA gyrase inhibitors for anti-NTM activity. Mycobacterium tuberculosis gyrase inhibitors (MGIs), a subclass of novel bacterial topoisomerase inhibitors (NBTIs), were recently shown to be active against the tubercle bacillus. Here, we show that the MGI EC/11716 not only has potent anti-tubercular activity but is active against M. abscessus and M. avium in vitro. Focusing on M. abscessus, which causes the most difficult to cure NTM disease, we show that EC/11716 is bactericidal, active against drug-tolerant biofilms, and efficacious in a murine model of M. abscessus lung infection. Based on resistant mutant selection experiments, we report a low frequency of resistance to EC/11716 and confirm DNA gyrase as its target. Our findings demonstrate the potential of NBTIs as anti-M. abscessus and possibly broad-spectrum anti-mycobacterial agents.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Animales , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas , Tioinosina/análogos & derivados , Inhibidores de Topoisomerasa II/farmacología
6.
Artículo en Inglés | MEDLINE | ID: mdl-33139282

RESUMEN

Phenotypic screening of inhibitors of the essential Mycobacterium tuberculosis FAS-II dehydratase HadAB led to the identification of GSK3011724A, a compound previously reported to inhibit the condensation step of FAS-II. Whole-cell-based and cell-free assays confirmed the lack of activity of GSK3011724A against the dehydratase despite evidence of cross-resistance between GSK3011724A and HadAB inhibitors. The nature of the resistance mechanisms is suggestive of alterations in the FAS-II interactome reducing access of GSK3011724A to KasA.


Asunto(s)
Mycobacterium tuberculosis , Proteínas Bacterianas/genética , Acido Graso Sintasa Tipo II , Ácidos Micólicos
7.
J Biol Chem ; 293(22): 8379-8393, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29632076

RESUMEN

Mycobacterium tuberculosis can remain dormant in the host, an ability that explains the failure of many current tuberculosis treatments. Recently, the natural products cyclomarin, ecumicin, and lassomycin have been shown to efficiently kill Mycobacterium tuberculosis persisters. Their target is the N-terminal domain of the hexameric AAA+ ATPase ClpC1, which recognizes, unfolds, and translocates protein substrates, such as proteins containing phosphorylated arginine residues, to the ClpP1P2 protease for degradation. Surprisingly, these antibiotics do not inhibit ClpC1 ATPase activity, and how they cause cell death is still unclear. Here, using NMR and small-angle X-ray scattering, we demonstrate that arginine-phosphate binding to the ClpC1 N-terminal domain induces millisecond dynamics. We show that these dynamics are caused by conformational changes and do not result from unfolding or oligomerization of this domain. Cyclomarin binding to this domain specifically blocked these N-terminal dynamics. On the basis of these results, we propose a mechanism of action involving cyclomarin-induced restriction of ClpC1 dynamics, which modulates the chaperone enzymatic activity leading eventually to cell death.


Asunto(s)
Antibacterianos/farmacología , Arginina/análogos & derivados , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Oligopéptidos/farmacología , Tuberculosis/tratamiento farmacológico , Arginina/farmacología , Muerte Celular , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Transporte Iónico , Compuestos Organofosforados/farmacología , Fosforilación , Conformación Proteica , Dominios Proteicos , Tuberculosis/metabolismo , Tuberculosis/microbiología
8.
Anal Biochem ; 567: 30-37, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30543804

RESUMEN

Tuberculosis affects about 100 million people worldwide and causes nearly 2 million deaths annually. It has been estimated that one third of all humans is infected with latent Mycobacterium tuberculosis (Mtb). Moreover, Mtb has become increasingly resistant to available antibiotics. Consequently, it is important to identify and characterize new therapeutic targets in Mtb and to synthesize selective inhibitors. ClpP1, ClpP2 and their associated regulatory ATPases, ClpX and ClpC1 are required for the growth of Mtb and for its virulence during murine infection and are highly attractive drug targets, especially since they are not present in the cytosol of mammalian cells, and they differ markedly from the mitochondrial ClpP complex. The importance of these proteins in Mtb is emphasized by the existence of several natural antibiotics targeting this system. In order to find new inhibitors of ClpC1P1P2 system, we developed an assay based on the ATP-dependent degradation of a fluorescent protein substrate. The hits obtained were further characterized with a set of secondary assays to identify precise targets within a complex. A large library of compounds was screened and led to the identification of a ClpC1 ATPase inhibitor demonstrating that this approach can be used in future searches for anti-TB agents.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas de Choque Térmico/antagonistas & inhibidores , Mycobacterium tuberculosis/metabolismo , Inhibidores de Serina Proteinasa/química , Antituberculosos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Inhibidores de Serina Proteinasa/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-29661879

RESUMEN

Due to the rise of drug-resistant forms of tuberculosis, there is an urgent need for novel antibiotics to effectively combat these cases and shorten treatment regimens. Recently, drug screens using whole-cell analyses have been shown to be successful. However, current high-throughput screens focus mostly on stricto sensu life/death screening that give little qualitative information. In doing so, promising compound scaffolds or nonoptimized compounds that fail to reach inhibitory concentrations are missed. To accelerate early tuberculosis (TB) drug discovery, we performed RNA sequencing on Mycobacterium tuberculosis and Mycobacterium marinum to map the stress responses that follow upon exposure to subinhibitory concentrations of antibiotics with known targets, ciprofloxacin, ethambutol, isoniazid, streptomycin, and rifampin. The resulting data set comprises the first overview of transcriptional stress responses of mycobacteria to different antibiotics. We show that antibiotics can be distinguished based on their specific transcriptional stress fingerprint. Notably, this fingerprint was more distinctive in M. marinum We decided to use this to our advantage and continue with this model organism. A selection of diverse antibiotic stress genes was used to construct stress reporters. In total, three functional reporters were constructed to respond to DNA damage, cell wall damage, and ribosomal inhibition. Subsequently, these reporter strains were used to screen a small anti-TB compound library to predict the mode of action. In doing so, we identified the putative modes of action for three novel compounds, which confirms the utility of our approach.


Asunto(s)
Antituberculosos/farmacología , Descubrimiento de Drogas/métodos , Mycobacterium marinum/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Pulmonar/tratamiento farmacológico , Animales , Secuencia de Bases , Línea Celular , Ciprofloxacina/farmacología , Etambutol/farmacología , Humanos , Isoniazida/farmacología , Macrófagos/efectos de los fármacos , Ratones , Mycobacterium marinum/genética , Mycobacterium tuberculosis/genética , Células RAW 264.7 , ARN Bacteriano/genética , Rifampin/farmacología , Análisis de Secuencia de ARN , Estreptomicina/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Tuberculosis Pulmonar/microbiología
10.
J Antimicrob Chemother ; 73(2): 395-403, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29177421

RESUMEN

Background: Owing to the emergence of multiresistant Plasmodium falciparum parasites in Southeast Asia, along with the impressive decrease in the efficacy of the endoperoxide compound artemisinin and of artemisinin-based combination therapies, the development of novel antimalarial drugs or combinations is required. Although several antiplasmodial molecules, such as endoperoxide-based compounds, are in advanced research or development, we do not know whether resistance to artemisinin derivatives might impact the efficacy of these new compounds. Objectives: To address this issue, the antiplasmodial efficacy of trioxaquines, hybrid endoperoxide-based molecules, was explored, along with their ability to select in vitro resistant parasites under discontinuous and dose-escalating drug pressure. Methods: The in vitro susceptibilities of artemisinin- and trioxaquine-resistant laboratory strains and recent Cambodian field isolates were evaluated by different phenotypic and genotypic assays. Results: Trioxaquines tested presented strong cross-resistance with artemisinin both in the artemisinin-resistant laboratory F32-ART5 line and in Cambodian field isolates. Trioxaquine drug pressure over 4 years led to the in vitro selection of the F32-DU line, which is resistant to trioxaquine and artemisinin, similar to the F32-ART lineage. F32-DU whole genome sequencing (WGS) revealed that resistance to trioxaquine was associated with the same non-synonymous mutation in the propeller domain of the K13 protein (M476I) that was found in the F32-ART lineage. Conclusions: These worrisome results indicate the risk of cross-resistance between artemisinins and endoperoxide-based antiplasmodial drugs in the development of the K13 mutant parasites and question the usefulness of these molecules in the future therapeutic arsenal.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Plasmodium falciparum/efectos de los fármacos , Cambodia , Genotipo , Humanos , Malaria Falciparum/parasitología , Proteínas Mutantes/genética , Pruebas de Sensibilidad Parasitaria , Fenotipo , Proteínas Protozoarias/genética , Selección Genética , Secuenciación Completa del Genoma
11.
Mol Microbiol ; 101(3): 515-29, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27121350

RESUMEN

The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid-growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol-based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1-binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.


Asunto(s)
Antituberculosos/farmacología , Ácidos Micólicos/metabolismo , Micobacterias no Tuberculosas/efectos de los fármacos , Piperidinas/farmacología , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/metabolismo , Pez Cebra
12.
Malar J ; 15(1): 385, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27448565

RESUMEN

BACKGROUND: Drugs that kill or inhibit Plasmodium gametocytes in the human host could potentially synergize the impact of other chemotherapeutic interventions by blocking transmission. To develop such agents, reliable methods are needed to study the in vitro activity of compounds against gametocytes. This study describes a novel assay for characterizing the activity of anti-malarial drugs against the later stages of Plasmodium falciparum gametocyte development using real-time PCR (qPCR). METHODS: Genes previously reported to be transcribed at the different sexual stages of the gametocytogenesis were selected for study and their mRNA expression was measured in a gametocytogenesis course by qPCR. Genes mainly expressed in the later stages of gametocyte development were used as a surrogate measurement of drug activity. To distinguish between cidal and static drug effects, two different experiments were performed in parallel, one with constant drug pressure throughout the experiment (144 h), and another in which the gametocyte cultures were exposed to the compound for only 48 h. RESULTS: Four P. falciparum genes coding for proteins Pf77, ROM3, Pfs25, and Pfg377 with transcription specific for late-stage gametocyte development were identified. The in vitro anti-malarial activity of compounds against such gametocytes was assessed by measuring mRNA levels of these genes using qPCR. The assay was validated against standard anti-malarial drugs (epoxomicin, dihydroartemisinin, chloroquine, thiostrepton, and methylene blue) and compounds from the GSK compound library with known anti-gametocyte activity. CONCLUSIONS: This study describes a novel assay for characterizing the activity of anti-malarial drugs against the later stages of P. falciparum gametocyte development using qPCR in genetically unmodified parasites. The method described is a reliable and user-friendly technique with a medium throughput that could be easily implemented in any laboratory.


Asunto(s)
Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Plasmodium falciparum/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Supervivencia Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Plasmodium falciparum/fisiología
13.
Antimicrob Agents Chemother ; 59(8): 4997-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25987618

RESUMEN

We report here a dehydropeptidase-deficient murine model of tuberculosis (TB) infection that is able to partially uncover the efficacy of marketed broad-spectrum ß-lactam antibiotics alone and in combination. Reductions of up to 2 log CFU in the lungs of TB-infected mice after 8 days of treatment compared to untreated controls were obtained at blood drug concentrations and time above the MIC (T>MIC) below clinically achievable levels in humans. These findings provide evidence supporting the potential of ß-lactams as safe and mycobactericidal components of new combination regimens against TB with or without resistance to currently used drugs.


Asunto(s)
Antibacterianos/farmacología , Dipeptidasas/deficiencia , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Tuberculosis/tratamiento farmacológico , beta-Lactamas/farmacología , Animales , Modelos Animales de Enfermedad , Quimioterapia Combinada/métodos , Proteínas Ligadas a GPI/deficiencia , Pulmón/metabolismo , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Tuberculosis/metabolismo , Tuberculosis/microbiología
14.
Antimicrob Agents Chemother ; 59(6): 3298-305, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25801574

RESUMEN

In response to a call for the global eradication of malaria, drug discovery has recently been extended to identify compounds that prevent the onward transmission of the parasite, which is mediated by Plasmodium falciparum stage V gametocytes. Lately, metabolic activity has been used in vitro as a surrogate for gametocyte viability; however, as gametocytes remain relatively quiescent at this stage, their ability to undergo onward development (gamete formation) may be a better measure of their functional viability. During gamete formation, female gametocytes undergo profound morphological changes and express translationally repressed mRNA. By assessing female gamete cell surface expression of one such repressed protein, Pfs25, as the readout for female gametocyte functional viability, we developed an imaging-based high-throughput screening (HTS) assay to identify transmission-blocking compounds. This assay, designated the P. falciparum female gametocyte activation assay (FGAA), was scaled up to a high-throughput format (Z' factor, 0.7 ± 0.1) and subsequently validated using a selection of 50 known antimalarials from diverse chemical families. Only a few of these agents showed submicromolar 50% inhibitory concentrations in the assay: thiostrepton, methylene blue, and some endoperoxides. To determine the best conditions for HTS, a robustness test was performed with a selection of the GlaxoSmithKline Tres Cantos Antimalarial Set (TCAMS) and the final screening conditions for this library were determined to be a 2 µM concentration and 48 h of incubation with gametocytes. The P. falciparum FGAA has been proven to be a robust HTS assay faithful to Plasmodium transmission-stage cell biology, and it is an innovative useful tool for antimalarial drug discovery which aims to identify new molecules with transmission-blocking potential.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Femenino , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Azul de Metileno/farmacología , Plasmodium falciparum/genética , ARN Mensajero/genética , Tioestreptona/farmacología
15.
Antimicrob Agents Chemother ; 57(7): 3268-74, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23629698

RESUMEN

It is the mature gametocytes of Plasmodium that are solely responsible for parasite transmission from the mammalian host to the mosquito. They are therefore a logical target for transmission-blocking antimalarial interventions, which aim to break the cycle of reinfection and reduce the prevalence of malaria cases. Gametocytes, however, are not a homogeneous cell population. They are sexually dimorphic, and both males and females are required for parasite transmission. Using two bioassays, we explored the effects of 20 antimalarials on the functional viability of both male and female mature gametocytes of Plasmodium falciparum. We show that mature male gametocytes (as reported by their ability to produce male gametes, i.e., to exflagellate) are sensitive to antifolates, some endoperoxides, methylene blue, and thiostrepton, with submicromolar 50% inhibitory concentrations (IC50s), whereas female gametocytes (as reported by their ability to activate and form gametes expressing the marker Pfs25) are much less sensitive to antimalarial intervention, with only methylene blue and thiostrepton showing any significant activity. These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the female gametocyte for transmission-blocking drugs. Given the female-biased sex ratio of Plasmodium falciparum (∼3 to 5 females:1 male), current gametocyte assays without a sex-specific readout are unlikely to identify male-targeted compounds and prioritize them for further development. Both assays reported here are being scaled up to at least medium throughput and will permit identification of key transmission-blocking molecules that have been overlooked by other screening campaigns.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Malaria Falciparum/tratamiento farmacológico , Azul de Metileno/farmacología , Plasmodium falciparum/fisiología , Tioestreptona/farmacología
16.
Mem Inst Oswaldo Cruz ; 108(6): 801-3, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24037205

RESUMEN

The production of fully functional human red cells in vitro from haematopoietic stem cells (hHSCs) has been successfully achieved. Recently, the use of hHSCs from cord blood represented a major improvement to develop the continuous culture system for Plasmodium vivax. Here, we demonstrated that CD34⁺ hHSCs from peripheral blood and bone marrow can be expanded and differentiated to reticulocytes using a novel stromal cell. Moreover, these reticulocytes and mature red blood cells express surface markers for entrance of malaria parasites contain adult haemoglobin and are also permissive to invasion by P. vivax and Plasmodium falciparum parasites.


Asunto(s)
Antígenos CD34/aislamiento & purificación , Eritrocitos/parasitología , Células Madre Hematopoyéticas/parasitología , Malaria Vivax , Malaria/sangre , Plasmodium falciparum , Diferenciación Celular , Técnicas de Cocultivo/métodos , Humanos , Reticulocitos/citología , Reticulocitos/parasitología
17.
Cell Surf ; 7: 100068, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34888432

RESUMEN

The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) ensures that drug discovery efforts remain at the forefront of TB research. There are multiple different experimental approaches that can be employed in the discovery of anti-TB agents. Notably, inhibitors of MmpL3 are numerous and structurally diverse in Mtb and have been discovered through the generation of spontaneous resistant mutants and subsequent whole genome sequencing studies. However, this approach is not always reliable and can lead to incorrect target assignment and requires orthogonal confirmatory approaches. In fact, many of these inhibitors have also been shown to act as multi-target agents, with secondary targets in Mtb, as well as in other non-MmpL3-containing pathogens. Herein, we have investigated further the cellular targets of the MmpL3-inhibitor BM212 and a number of BM212 analogues. To determine the alternative targets of BM212, which may have been masked by MmpL3 mutations, we have applied a combination of chemo-proteomic profiling using bead-immobilised BM212 derivatives and protein extracts, along with whole-cell and biochemical assays. The study identified EthR2 (Rv0078) as a protein that binds BM212 analogues. We further demonstrated binding of BM212 to EthR2 through an in vitro tryptophan fluorescence assay, which showed significant quenching of tryptophan fluorescence upon addition of BM212. Our studies have demonstrated the value of revisiting drugs with ambiguous targets, such as MmpL3, in an attempt to find alternative targets and the study of off-target effects to understand more precisely target engagement of new hits emerging from drug screening campaigns.

18.
Antimicrob Agents Chemother ; 54(5): 1872-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20160056

RESUMEN

Artemisinin (ART)-based combination therapies (ACTs) are the first-line drugs-and often the last treatments-that can effectively cure Plasmodium falciparum infections. Unfortunately, the decreased clinical efficacy of artesunate, one of the major ART derivatives, was recently reported along the Thailand-Cambodia border. Through long-term artemisinin pressure in vitro, we have obtained an ART-tolerant strain that can survive extremely high doses of ART. We showed that drug pressure could induce a subpopulation of ring stages into developmental arrest, which can explain the ART tolerance in P. falciparum. We also observed interesting transcriptomic modifications possibly associated with the acquisition of ART tolerance. These modifications include the overexpression of heat shock and erythrocyte surface proteins and the downexpression of a cell cycle regulator and a DNA biosynthesis protein. This study highlights a new phenomenon in the Plasmodium response to ART that may explain the delayed clearance of parasites after artesunate treatment observed on the Thailand-Cambodia border and that provides important information for achieving a better understanding of the mechanisms of antimalarial resistance.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Farmacorresistencia Bacteriana/genética , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum , Artesunato , Cambodia , Eritrocitos/parasitología , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Análisis de Secuencia por Matrices de Oligonucleótidos , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Tailandia
19.
FASEB Bioadv ; 2(10): 600-612, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33089076

RESUMEN

BACKGROUND: Whole-cell phenotypic screening is the driving force behind modern anti-tubercular drug discovery efforts. Focus has shifted from screening for bactericidal scaffolds to screens incorporating target deconvolution. Target-based screening aims to direct drug discovery toward known effective targets and avoid investing resources into unproductive lines of enquiry. The protein synthesis pipeline, including RNA polymerase and the ribosome, is a clinically proven target in Mycobacterium tuberculosis. Screening for new hits of this effective target pathway is an invaluable tool in the drug discovery arsenal. METHODS: Using M. tuberculosis H37Rv augmented with anhydrotetracycline-inducible expression of mCherry, a phenotypic screen was developed for the identification of protein synthesis inhibitors in a medium throughput screening format. RESULTS: The assay was validated using known inhibitors of protein synthesis to show a dose-dependent reduction in mCherry fluorescence. This was expanded to a proprietary screen of hypothetical protein synthesis hits and modified to include quantitative viability measurement of cells using resazurin. CONCLUSION: Following the success of the proprietary screen, a larger scale screen of the GlaxoSmithKline anti-tubercular library containing 2799 compounds was conducted. Combined single shot and dose-response screening yielded 18 hits, 0.64% of all screened compounds.

20.
FASEB Bioadv ; 1(4): 246-254, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32123830

RESUMEN

Anti-tubercular drug discovery continues to be dominated by whole-cell high-throughput screening campaigns, enabling the rapid discovery of new inhibitory chemical scaffolds. Target-based screening is a popular approach to direct inhibitor discovery with a specified mode of action, eliminating the discovery of anti-tubercular agents against unsuitable targets. Herein, a screening method has been developed using Mycobacterium bovis BCG to identify inhibitors of amino acid biosynthesis. The methodology was initially optimized using the known branched-chain amino acid biosynthetic inhibitors metsulfuron-methyl (MSM) and sulfometuron-methyl (SMM), and subsequently, whole genome sequencing of resistant mutants and the use of over-expressor strains confirming their mode of action. The GlaxoSmithKline compound library of small molecule inhibitors with known activity against Mycobacterium tuberculosis was then used to validate the screen. In this paper, we have shown that media supplementation with amino acids can rescue M bovis BCG from known amino acid synthesis inhibitors, MSM and SMM, in a pathway specific manner. The therapeutic potential of amino acid biosynthesis inhibitors emphasizes the importance of this innovative screen, enabling the discovery of compounds targeting a multitude of related essential biochemical pathways, without limiting drug discovery toward a single target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA