Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 33(3): e17231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38054561

RESUMEN

Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between Ne ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2-9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction.


Asunto(s)
Lobos , Animales , Lobos/genética , Genética de Población , Genómica , Densidad de Población , América del Norte
2.
Mol Ecol ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37212202

RESUMEN

Oceanic islands are characterized by conditions that favour diversification into endemic lineages that can be very different from their mainland counterparts. This can be the result of fast phenotypic divergence due to drift or the result of slower adaptation to local conditions. This uniqueness can obscure their evolutionary history. Here we used morphological, stable isotope, genetic and genomic data to characterize common quails (Coturnix coturnix) in the Azores archipelago and assess the divergence from neighbouring common quail populations. Historical documents suggested that these quails could have a recent origin associated with the arrival of humans in the last centuries. Our results show that Azorean quails constitute a well-differentiated lineage with small size and dark throat pigmentation that has lost the migratory ability and that diverged from mainland quail lineages more than 0.8 mya, contrary to the notion of a recent human-mediated arrival. Even though some Azorean quails carry an inversion that affects 115 Mbp of chromosome 1 and that has been associated with the loss of the migratory behaviour in other common quail populations, half of the analysed individuals do not have that inversion and still do not migrate. The long coexistence and evolution in isolation in the Azores of two chromosomal variants (with and without the inversion) is best explained by balancing selection. Thus, a unique and long evolutionary history led to the island endemic that we know today, C. c. conturbans.

3.
J Hered ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37955431

RESUMEN

The gray wolf (Canis lupus) population on the Iberian Peninsula was the largest in western and central Europe during most of the 20th century, with its size apparently never under a few hundred individuals. After partial legal protection in the 1970s in Spain, the northwest Iberian population increased to about 300-350 packs and then stabilized. In contrast to many current European wolf populations, which have been connected through gene flow, the Iberian wolf population has been isolated for decades. Here we measured changes on genomic diversity and inbreeding through the last decades in a geographic context. We find that the level of genomic diversity in Iberian wolves is low compared to other Eurasian wolf populations. Despite population expansion in the last 50 years, some modern wolves had very high inbreeding, especially in the recently recolonized and historical edge areas. These individuals contrast with others with low inbreeding within the same population. The high variance in inbreeding despite population expansion seems associated with small-scale fragmentation of the range that is revealed by the genetic similarity between modern and historical samples from close localities despite being separated by decades, remaining differentiated from other individuals that are just over 100 km away, a small distance for a species with great dispersal capacity inhabiting a continuous range. This illustrates that, despite its demographically stable condition, the population would probably benefit from favoring connectivity within the population as well as genetic exchange with other European wolf populations to avoid excessive fragmentation and local inbreeding depression.

4.
Mol Ecol ; 30(23): 6101-6120, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372365

RESUMEN

Pleistocene climate change impacted entire ecosystems throughout the world. In the northern hemisphere, the distribution of Arctic species expanded during glacial periods, while more temperate and mesic species contracted into climatic refugia, where isolation drove genetic divergence. Cycles of local cooling and warming in the Sahara region of northern Africa caused repeated contractions and expansions of savannah-like environments which connected mesic species isolated in refugia during interglacial times, possibly driving population expansions and contractions; divergence and geneflow in the associated fauna. Here, we use whole genome sequences of African golden wolves (Canis lupaster), a generalist mesopredator with a wide distribution in northern Africa to estimate their demographic history and past episodes of geneflow. We detect a correlation between divergence times and cycles of increased aridity-associated Pleistocene glacial cycles. A complex demographic history with responses to local climate change in different lineages was found, including a relict lineage north of the High Atlas Mountains of Morocco that has been isolated for more than 18,000 years, possibly a distinct ecotype.


Asunto(s)
Lobos , Animales , ADN Mitocondrial , Demografía , Ecosistema , Variación Genética , Filogenia , Filogeografía , Refugio de Fauna , Lobos/genética
5.
Mol Ecol ; 30(23): 6340-6354, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34161633

RESUMEN

The endangered Mexican wolf (Canis lupus baileyi) is known to carry exceedingly low levels of genetic diversity. This could be (i) the result of long-term evolutionary patterns as they exist at the southernmost limit of the species distribution at a relatively reduced effective size, or (ii) due to rapid population decline caused by human persecution over the last century. If the former, purifying selection is expected to have minimized the impact of inbreeding. If the latter, rapid and recent declines in genetic diversity may have resulted in severe fitness consequences. To differentiate these hypotheses, we conducted comparative whole-genome analyses of five historical Mexican wolves (1907-1917) and 18 contemporary Mexican and grey wolves from North America and Eurasia. Based on whole-genome data, historical and modern Mexican wolves together form a discrete unit. Moreover, we found that modern Mexican wolves have reduced genetic diversity and increased inbreeding relative to the historical population, which was widespread across the southwestern United States and not restricted to Mexico as previously assumed. Finally, although Mexican wolves have evolved in sympatry with coyotes (C. latrans), we observed lower introgression between historical Mexican wolves and coyotes than with modern Mexican wolves, despite similarities in body size. Taken together, our data show that recent population declines probably caused the reduced level of genetic diversity, but not the observed differentiation of the Mexican wolves from other North American wolves.


Asunto(s)
Coyotes , Lobos , Animales , Coyotes/genética , Variación Genética , Genoma , México , Lobos/genética
6.
Mol Phylogenet Evol ; 161: 107167, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33798672

RESUMEN

Mountain ranges offer opportunities for understanding how species evolved and diversified across different environmental conditions. Neotropical frogs of the genus Oreobates (Anura: Craugastoridae) are adapted to highland and lowland habitats along the Andes, but many aspects of their evolution remain unknown. We studied their evolutionary history using ~18,000 exons enriched by targeted sequence-capture. Since capture success was very variable across samples, we evaluated to what degree differing data filtering produced robust inferences. The inferred evolutionary framework evidenced phylogenetic discordances among lowland species that can be explained by taxonomic misidentification or admixture of ancestral lineages. Highland species showed smaller effective populations than lowland frogs, probably due to greater habitat fragmentation in montane environments. Stronger genetic drift likely decreased the power of purifying selection and led to an increased proportion of nonsynonymous mutations in highland populations that could play an important role in their adaptation. Overall, our work sheds light on the evolutionary history and diversification of this group of Neotropical frogs along elevational gradients in the Andes as well as on their patterns of intraspecific diversity.


Asunto(s)
Altitud , Anuros/genética , Ecosistema , Filogenia , Animales
7.
Mol Ecol ; 29(21): 4074-4090, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32911576

RESUMEN

Janzen's influential "mountain passes are higher in the tropics" hypothesis predicts restricted gene flow and genetic isolation among populations spanning elevational gradients in the tropics. Few studies have tested this prediction, and studies that focus on population genetic structure in Southeast Asia are particularly underrepresented in the literature. Here, we test the hypothesis that mountain treeshrews (Tupaia montana) exhibit limited dispersal across their broad elevational range which spans ~2,300 m on two peaks in Kinabalu National Park (KNP) in Borneo: Mt Tambuyukon (MT) and Mt Kinabalu (MK). We sampled 83 individuals across elevations on both peaks and performed population genomics analyses on mitogenomes and single nucleotide polymorphisms from 4,106 ultraconserved element loci. We detected weak genetic structure and infer gene flow both across elevations and between peaks. We found higher genetic differentiation on MT than MK despite its lower elevation and associated environmental variation. This implies that, contrary to our hypothesis, genetic structure in this system is not primarily shaped by elevation. We propose that this pattern may instead be the result of historical processes and limited upslope gene flow on MT. Importantly, our results serve as a foundational estimate of genetic diversity and population structure from which to track potential future effects of climate change on mountain treeshrews in KNP, an important conservation stronghold for the mountain treeshrew and other montane species.


Asunto(s)
Altitud , Flujo Génico , Animales , Borneo , Estructuras Genéticas , Humanos , Mamíferos
8.
J Hered ; 111(4): 392-404, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32485737

RESUMEN

Tropical mountains are cradles of biodiversity and endemism. Sundaland, tropical Southeast Asia, hosts 3 species of Rattus endemic to elevations above 2000 m with an apparent convergence in external morphology: Rattus korinchi and R. hoogerwerfi from Sumatra, and R. baluensis from Borneo. A fourth one, R. tiomanicus, is restricted to lowland elevations across the whole region. The origins of these endemics are little known due to the absence of a robust phylogenetic framework. We use complete mitochondrial genomes from the 3 high altitude Rattus, and several related species to determine their relationships, date divergences, reconstruct their history of colonization, and test for selection on the mitochondrial DNA. We show that mountain colonization happened independently in Borneo (<390 Kya) and Sumatra (~1.38 Mya), likely from lowland lineages. The origin of the Bornean endemic R. baluensis is very recent and its genetic diversity is nested within the diversity of R. tiomanicus. We found weak evidence of positive selection in the high-elevation lineages and attributed the greater nonsynonymous mutations on these branches (specially R. baluensis) to lesser purifying selection having acted on the terminal branches in the phylogeny.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial , Filogenia , Ratas/genética , Altitud , Animales , Borneo , ADN Mitocondrial/genética , Indonesia , Ratas/clasificación , Selección Genética
10.
Mol Ecol ; 27(18): 3599-3612, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30074659

RESUMEN

Allee effects reduce the viability of small populations in many different ways, which act synergistically to lead populations towards extinction vortexes. The Sierra Morena wolf population, isolated in the south of the Iberian Peninsula and composed of just one or few packs for decades, represents a good example of how diverse threats act additively in very small populations. We sequenced the genome of one of the last wolves identified (and road-killed) in Sierra Morena and that of another wolf in the Iberian Wolf Captive Breeding Program and compared them with other wolf and dog genomes from around the world (including two previously published genome sequences from northern Iberian wolves). The results showed relatively low overall genetic diversity in Iberian wolves, but diverse population histories including past introgression of dog genes. The Sierra Morena wolf had an extraordinarily high level of inbreeding and long runs of homozygosity, resulting from the long isolation. In addition, about one-third of the genome was of dog origin. Despite the introgression of dog genes, heterozygosity remained low because of continued inbreeding after several hybridization events. The results thus illustrate the case of a small and isolated wolf population where the low population density may have favoured hybridization and introgression of dog alleles, but continued inbreeding may have resulted in large chromosomal fragments of wolf origin completely disappearing from the population, and being replaced by chromosomal fragments of dog origin. The latest population surveys suggest that this population may have gone extinct.


Asunto(s)
Genética de Población , Endogamia , Lobos/genética , Alelos , Animales , Mapeo Cromosómico , Conservación de los Recursos Naturales , Perros , Heterocigoto , Hibridación Genética , Polimorfismo de Nucleótido Simple , Densidad de Población , España , Secuenciación Completa del Genoma
11.
Nature ; 479(7373): 359-64, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22048313

RESUMEN

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Asunto(s)
Biota , Cambio Climático/historia , Extinción Biológica , Actividades Humanas/historia , Mamíferos/fisiología , Animales , Teorema de Bayes , Bison , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Europa (Continente) , Fósiles , Variación Genética , Geografía , Historia Antigua , Caballos , Humanos , Mamíferos/genética , Mamuts , Datos de Secuencia Molecular , Dinámica Poblacional , Reno , Siberia , Especificidad de la Especie , Factores de Tiempo
12.
BMC Evol Biol ; 16: 80, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27075887

RESUMEN

BACKGROUND: The Indonesian island of Sulawesi has a complex geological history. It is composed of several landmasses that have arrived at a near modern configuration only in the past few million years. It is the largest island in the biodiversity hotspot of Wallacea-an area demarcated by the biogeographic breaks between Wallace's and Lydekker's lines. The mammal fauna of Sulawesi is transitional between Asian and Australian faunas. Sulawesi's three genera of squirrels, all endemic (subfamily Nannosciurinae: Hyosciurus, Rubrisciurus and Prosciurillus), are of Asian origin and have evolved a variety of phenotypes that allow a range of ecological niche specializations. Here we present a molecular phylogeny of this radiation using data from museum specimens. High throughput sequencing technology was used to generate whole mitochondrial genomes and a panel of nuclear ultraconserved elements providing a large genome-wide dataset for inferring phylogenetic relationships. RESULTS: Our analysis confirmed monophyly of the Sulawesi taxa with deep divergences between the three endemic genera, which predate the amalgamation of the current island of Sulawesi. This suggests lineages may have evolved in allopatry after crossing Wallace's line. Nuclear and mitochondrial analyses were largely congruent and well supported, except for the placement of Prosciurillus murinus. Mitochondrial analysis revealed paraphyly for Prosciurillus, with P. murinus between or outside of Hyosciurus and Rubrisciurus, separate from other species of Prosciurillus. A deep but monophyletic history for the four included species of Prosciurillus was recovered with the nuclear data. CONCLUSIONS: The divergence of the Sulawesi squirrels from their closest relatives dated to ~9.7-12.5 million years ago (MYA), pushing back the age estimate of this ancient adaptive radiation prior to the formation of the current conformation of Sulawesi. Generic level diversification took place around 9.7 MYA, opening the possibility that the genera represent allopatric lineages that evolved in isolation in an ancient proto-Sulawesian archipelago. We propose that incongruence between phylogenies based on nuclear and mitochondrial sequences may have resulted from biogeographic discordance, when two allopatric lineages come into secondary contact, with complete replacement of the mitochondria in one species.


Asunto(s)
Sciuridae/clasificación , Sciuridae/genética , Animales , Biodiversidad , Evolución Biológica , Secuencia Conservada , Genoma Mitocondrial , Indonesia , Mitocondrias/genética , Museos , Filogenia , Análisis de Secuencia de ADN
13.
Mol Phylogenet Evol ; 94(Pt B): 752-764, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26524259

RESUMEN

The plain long-nosed squirrels, genus Dremomys, are high elevation species in East and Southeast Asia. Here we present a complete molecular phylogeny for the genus based on nuclear and mitochondrial DNA sequences. Concatenated mitochondrial and nuclear gene trees were constructed to determine the tree topology, and date the tree. All speciation events within the plain-long nosed squirrels (genus Dremomys) were ancient (dated to the Pliocene or Miocene), and averaged older than many speciation events in the related Sunda squirrels, genus Sundasciurus. Within the plain long-nosed squirrels, the most recent interspecific split occurred 2.9 million years ago, older than some splits within Sunda squirrels, which dated to the Pleistocene. Our results demonstrate that the plain long-nosed squirrels are not monophyletic. The single species with a distinct distribution, the Bornean mountain ground squirrel (Dremomys everetti), which is endemic to the high mountains of Borneo, is nested within the Sunda squirrels with high support. This species diverged from its sister taxa in the Sunda squirrels 6.62 million years ago, and other plain long-nosed squirrels over 11 million years ago. Our analyses of morphological traits in these related genera support the re-classification of the Bornean mountain ground squirrel, Dremomys everetti, to the genus Sundasciurus, which changes its name to Sundasciurus everetti. Past inclusion in the plain long-nosed squirrels (Dremomys) reflects convergent evolution between these high elevation species.


Asunto(s)
Sciuridae/clasificación , Animales , Evolución Biológica , Núcleo Celular , ADN Mitocondrial , Ecosistema , Femenino , Masculino , Filogenia , Filogeografía , Sciuridae/genética
14.
Mol Phylogenet Evol ; 68(1): 1-13, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23511217

RESUMEN

We reconstruct the phylogeny of all recognized species of the tropical forest associated Asian barbets based on mitochondrial and nuclear sequence data and test for the monophyly of species and genera. Tropical regions are well known for their extraordinarily high levels of biodiversity, but we still have a poor understanding of how this richness was generated and maintained through evolutionary time. Multiple theoretical frameworks have been developed to explain this diversity, including the Pleistocene pump hypothesis and the museum hypothesis. We use our phylogeny of the Asian barbets to test these hypotheses. Our data do not find an increase in speciation in the Pleistocene as predicted by the Pleistocene pump hypothesis. We do find evidence of extinctions, which apparently contradicts the museum hypothesis. However, the extinctions are only in a part of the phylogeny that is distributed mainly across Sundaland (the Malay peninsula and the islands off southeast Asia). The theory of island biogeography predicts a higher rate of extinction on islands than on mainland areas. The data from the part of the phylogeny primarily distributed on the mainland best fit a pure birth model of speciation, and thus supports the museum hypothesis.


Asunto(s)
Aves/clasificación , ADN Mitocondrial/clasificación , Extinción Biológica , Especiación Genética , Filogenia , Animales , Asia Sudoriental , Teorema de Bayes , Biodiversidad , Aves/genética , Citocromos b/clasificación , Citocromos b/genética , ADN Mitocondrial/genética , Fibrinógeno/clasificación , Fibrinógeno/genética , Intrones , NADH Deshidrogenasa/clasificación , NADH Deshidrogenasa/genética , Filogeografía , Especificidad de la Especie , Clima Tropical
15.
Science ; 379(6639): 1316-1323, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36996225

RESUMEN

The horse is central to many Indigenous cultures across the American Southwest and the Great Plains. However, when and how horses were first integrated into Indigenous lifeways remain contentious, with extant models derived largely from colonial records. We conducted an interdisciplinary study of an assemblage of historic archaeological horse remains, integrating genomic, isotopic, radiocarbon, and paleopathological evidence. Archaeological and modern North American horses show strong Iberian genetic affinities, with later influx from British sources, but no Viking proximity. Horses rapidly spread from the south into the northern Rockies and central plains by the first half of the 17th century CE, likely through Indigenous exchange networks. They were deeply integrated into Indigenous societies before the arrival of 18th-century European observers, as reflected in herd management, ceremonial practices, and culture.


Asunto(s)
Animales Domésticos , Domesticación , Caballos , Animales , Humanos , Arqueología , Estados Unidos
16.
Biol Lett ; 8(4): 644-7, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22491760

RESUMEN

Recurrent cycles of climatic change during the Quaternary period have dramatically affected the population genetic structure of many species. We reconstruct the recent demographic history of the coyote (Canis latrans) through the use of Bayesian techniques to examine the effects of Late Quaternary climatic perturbations on the genetic structure of a highly mobile generalist species. Our analysis reveals a lack of phylogeographic structure throughout the range but past population size changes correlated with climatic changes. We conclude that even generalist carnivorous species are very susceptible to environmental changes associated with climatic perturbations. This effect may be enhanced in coyotes by interspecific competition with larger carnivores.


Asunto(s)
Carnivoría/fisiología , Cambio Climático , Conducta Competitiva/fisiología , Coyotes/fisiología , Animales , Teorema de Bayes , Canadá , Coyotes/clasificación , Coyotes/genética , Ecosistema , Genética de Población/métodos , Geografía , Haplotipos , Mitocondrias/genética , Filogenia , Filogeografía , Dinámica Poblacional , Estados Unidos
17.
Biol Lett ; 8(5): 838-41, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22675135

RESUMEN

Population sizes and movement patterns of ungulate grazers and their predators have fluctuated dramatically over the past few centuries, largely owing to overharvesting, land-use change and historic management. We used δ(13)C and δ(15)N values measured from bone collagen of historic and recent gray wolves and their potential primary prey from Yellowstone National Park to gain insight into the trophic dynamics and nutrient conditions of historic and modern grasslands. The diet of reintroduced wolves closely parallels that of the historic population. We suggest that a significant shift in faunal δ(15)N values over the past century reflects impacts of anthropogenic environmental changes on grassland ecosystems, including grazer-mediated shifts in grassland nitrogen cycle processes.


Asunto(s)
Huesos/fisiología , Isótopos de Carbono/química , Colágeno/metabolismo , Ciervos/fisiología , Isótopos de Nitrógeno/química , Rumiantes/fisiología , Lobos/fisiología , Animales , Ecología , Ecosistema , Ambiente , Mamíferos/fisiología , Estado Nutricional , Poaceae , Densidad de Población , Conducta Predatoria , Estaciones del Año , Suelo , Wyoming
18.
PLoS One ; 17(6): e0268213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35714073

RESUMEN

Bergmann's and Allen's rules were defined to describe macroecological patterns across latitudinal gradients. Bergmann observed a positive association between body size and latitude for endothermic species while Allen described shorter appendages as latitude increases. Almost two centuries later, there is still ongoing discussion about these patterns. Temperature, the common variable in these two rules, varies predictably across both latitude and elevation. Although these rules have been assessed extensively in mammals across latitude, particularly in regions with strong seasonality, studies on tropical montane mammals are scarce. We here test for these patterns and assess the variation of several other locomotory, diet-associated, body condition, and thermoregulatory traits across elevation in the Mountain Treeshrew (Tupaia montana) on tropical mountains in Borneo. Based on morphological measurements from both the field and scientific collections, we found a complex pattern: Bergmann's rule was not supported in our tropical mountain system, since skull length, body size, and weight decreased from the lowest elevations (<1000 m) to middle elevations (2000-2500 m), and then increased from middle elevations to highest elevations. Allen's rule was supported for relative tail length, which decreased with elevation, but not for ear and hindfoot length, with the former remaining constant and the latter increasing with elevation. This evidence together with changes in presumed diet-related traits (rostrum length, zygomatic breadth and upper tooth row length) along elevation suggest that selective pressures other than temperature, are playing a more important role shaping the morphological variation across the distribution of the Mountain Treeshrew. Diet, food acquisition, predation pressure, and/or intra- and inter-specific competition, are some of the potential factors driving the phenotypic variation of this study system. The lack of variation in body condition might suggest local adaptation of this species across its elevational range, perhaps due to generalist foraging strategies. Finally, a highly significant temporal effect was detected in several traits but not in others, representing the first phenotypic variation temporal trends described on treeshrews.


Asunto(s)
Variación Biológica Poblacional , Tupaia , Animales , Tamaño Corporal , Montana , Temperatura
19.
Genes (Basel) ; 14(1)2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36672816

RESUMEN

Gray wolves (Canis lupus) in the Iberian Peninsula declined substantially in both range and population size in the last few centuries due to human persecution and habitat fragmentation. However, unlike many other western European populations, gray wolves never went extinct in Iberia. Since the minimum number was recorded around 1970, their numbers have significantly increased and then stabilized in recent decades. We analyzed mitochondrial genomes from 54 historical specimens of Iberian wolves from across their historical range using ancient DNA methods. We compared historical and current mitochondrial diversity in Iberian wolves at the 5' end of the control region (n = 17 and 27) and the whole mitochondrial genome excluding the control region (n = 19 and 29). Despite an increase in population size since the 1970s, genetic diversity declined. We identified 10 whole mitochondrial DNA haplotypes in 19 historical specimens, whereas only six of them were observed in 29 modern Iberian wolves. Moreover, a haplotype that was restricted to the southern part of the distribution has gone extinct. Our results illustrate a lag between demographic and genetic diversity changes, and show that after severe population declines, genetic diversity can continue to be lost in stable or even expanding populations. This suggests that such populations may be of conservation concern even after their demographic trajectory has been reversed.


Asunto(s)
Lobos , Humanos , Animales , Lobos/genética , Genética de Población , Crecimiento Demográfico , Europa (Continente) , Variación Genética/genética
20.
Curr Biol ; 32(2): 462-469.e6, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34847353

RESUMEN

The presence of population-specific phenotypes often reflects local adaptation or barriers to gene flow. The co-occurrence of phenotypic polymorphisms that are restricted within the range of a highly mobile species is more difficult to explain. An example of such polymorphisms is in the common quail Coturnix coturnix, a small migratory bird that moves widely during the breeding season in search of new mating opportunities, following ephemeral habitats,1,2 and whose females may lay successive clutches at different locations while migrating.3 In spite of this vagility, previous studies reported a higher frequency of heavier males with darker throat coloration in the southwest of the distribution (I. Jiménez-Blasco et al., 2015, Int. Union Game Biol., conference). We used population genomics and cytogenetics to explore the basis of this polymorphism and discovered a large inversion in the genome of the common quail. This inversion extends 115 Mbp in length and encompasses more than 7,000 genes (about 12% of the genome), producing two very different forms. Birds with the inversion are larger, have darker throat coloration and rounder wings, are inferred to have poorer flight efficiency, and are geographically restricted despite the high mobility of the species. Stable isotope analyses confirmed that birds carrying the inversion have shorter migratory distances or do not migrate. However, we found no evidence of pre- or post-zygotic isolation, indicating the two forms commonly interbreed and that the polymorphism remains locally restricted because of the effect on behavior. This illustrates a genomic mechanism underlying maintenance of geographically structured polymorphisms despite interbreeding with a lineage with high mobility.


Asunto(s)
Coturnix , Genoma , Animales , Inversión Cromosómica , Coturnix/genética , Femenino , Flujo Génico , Masculino , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA