Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(3): 316-324, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939220

RESUMEN

Rationale: The mean pulmonary arterial wedge pressure (mPAWP) is the critical hemodynamic factor differentiating group 1 pulmonary arterial hypertension (PAH) from group 2 pulmonary hypertension associated with left heart disease. Despite the discrepancy between the mPAWP upper physiologic normal and current PAH definitions, the implications of the initial mPAWP for PAH clinical trajectory are poorly understood. Objectives: To model longitudinal mPAWP trajectories in PAH over 10 years and examine the clinical and hemodynamic factors associated with trajectory membership. Methods: Adult patients with PAH with two or more right heart catheterizations were identified from a multiinstitution healthcare system in eastern Massachusetts. mPAWP trajectories were constructed via group-based trajectory modeling. Feature selection was performed in least absolute shrinkage and selection operator regression. Logistic regression was used to assess associations between trajectory membership, baseline characteristics, and transplant-free survival. Measurements and Main Results: Among 301 patients with PAH, there were two distinct mPAWP trajectories, termed "mPAWP-high" (n = 71; 23.6%) and "mPAWP-low" (n = 230; 76.4%), based on the ultimate mPAWP value. Initial mPAWP clustered around median 12 mm Hg (interquartile range [IQR], 8-14 mm Hg) in the mPAWP-high and 9 mm Hg (IQR, 6-11 mm Hg) in the mPAWP-low trajectories (P < 0.001). After feature selection, initial mPAWP ⩾12 mm Hg predicted an mPAWP-high trajectory (odds ratio, 3.2; 95% confidence interval, 1.4-6.1; P = 0.0006). An mPAWP-high trajectory was associated with shorter transplant-free survival (vs. mPAWP-low, median, 7.8 vs. 11.3 yr; log-rank P = 0.017; age-adjusted P = 0.217). Conclusions: Over 10 years, the mPAWP followed two distinct trajectories, with 25% evolving into group 2 pulmonary hypertension physiology. Using routine baseline data, longitudinal mPAWP trajectory could be predicted accurately, with initial mPAWP ⩾12 mm Hg as one of the strongest predictors.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Adulto , Humanos , Presión Esfenoidal Pulmonar/fisiología , Estudios Retrospectivos , Hipertensión Pulmonar Primaria Familiar
2.
Artículo en Inglés | MEDLINE | ID: mdl-38820122

RESUMEN

RATIONALE: Quantitative interstitial abnormalities (QIA) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIA and its role in the QIA-outcome relationship is unknown. OBJECTIVES: To quantify radiographic pulmonary vasculopathy in quantitative interstitial abnormalities (QIA) and determine if this vasculopathy mediates the QIA-outcome relationship. METHODS: Ever-smokers with QIA, outcome, and pulmonary vascular mediator data were identified from the COPDGene cohort. CT-based vascular mediators were: right ventricle-to-left ventricle ratio (RV/LV), pulmonary artery-to-aorta ratio (PA/Ao), and pre-acinar intraparenchymal arterial dilation (PA volume 5-20mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were: six-minute walk distance (6MWD) and modified Medical Council Research Council (mMRC) Dyspnea score ≥2. Adjusted causal mediation analyses were used to determine if the pulmonary vasculature mediated the QIA effect on outcomes. Associations of pre-acinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. MAIN RESULTS: Among 8,200 participants, QIA burden correlated positively with vascular damage measures including pre-acinar arterial dilation. Pre-acinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6MWD (56.2-100%, p<0.001). PA/Ao was a weak mediator and RV/LV was a suppressor. Similar results were observed in the QIA-mMRC relationship. Pre-acinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels including angiopoietin-2 and NT-proBNP. CONCLUSIONS: Parenchymal quantitative interstitial abnormalities (QIA) deleteriously impact outcomes primarily through pulmonary vasculopathy. Pre-acinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIA.

3.
Am J Respir Crit Care Med ; 208(3): 312-321, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276608

RESUMEN

Rationale: Predictors of adverse outcome in pulmonary hypertension (PH) are well established; however, data that inform survival are lacking. Objectives: We aim to identify clinical markers and therapeutic targets that inform the survival in PH. Methods: We included data from patients with elevated mean pulmonary artery pressure (mPAP) diagnosed by right heart catheterization in the U.S. Veterans Affairs system (October 1, 2006-September 30, 2018). Network medicine framework was used to subgroup patients when considering an N of 79 variables per patient. The results informed outcome analyses in the discovery cohort and a sex-balanced validation right heart catheterization cohort from Vanderbilt University (September 24, 1998-December 20, 2013). Measurements and Main Results: From an N of 4,737 complete case patients with mPAP of 19-24 mm Hg, there were 21 distinct subgroups (network modules) (all-cause mortality range = 15.9-61.2% per module). Pulmonary arterial compliance (PAC) drove patient assignment to modules characterized by increased survival. When modeled continuously in patients with mPAP ⩾19 mm Hg (N = 37,744; age, 67.2 yr [range = 61.7-73.8 yr]; 96.7% male; median follow-up time, 1,236 d [range = 570-1,971 d]), the adjusted all-cause mortality hazard ratio was <1.0 beginning at PAC ⩾3.0 ml/mm Hg and decreased progressively to ∼7 ml/mm Hg. A protective association between PAC ⩾3.0 ml/mm Hg and mortality was also observed in the validation cohort (N = 1,514; age, 60.2 yr [range = 49.2-69.1 yr]; 48.0% male; median follow-up time, 2,485 d [range = 671-3,580 d]). The association was strongest in patients with precapillary PH at the time of catheterization, in whom 41% (95% confidence interval, 0.55-0.62; P < 0.001) and 49% (95% confidence interval, 0.38-0.69; P < 0.001) improvements in survival were observed for PAC ⩾3.0 versus <3.0 ml/mm Hg in the discovery and validation cohorts, respectively. Conclusions: These data identify elevated PAC as an important parameter associated with survival in PH. Prospective studies are warranted that consider PAC ⩾3.0 ml/mm Hg as a therapeutic target to achieve through proven interventions.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Humanos , Masculino , Anciano , Persona de Mediana Edad , Femenino , Estudios Retrospectivos , Cateterismo Cardíaco , Modelos de Riesgos Proporcionales , Hemodinámica
4.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L617-L627, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37786941

RESUMEN

Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Esclerodermia Sistémica , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/complicaciones , Quinurenina , Triptófano , Esclerodermia Sistémica/complicaciones , Hipertensión Pulmonar Primaria Familiar , Biomarcadores
7.
N Engl J Med ; 389(14): 1331-1332, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37634159
8.
FASEB J ; 34(8): 11087-11100, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32638415

RESUMEN

Ectopic cardiovascular calcification is a highly prevalent pathology for which there are no effective novel or repurposed pharmacotherapeutics to prevent disease progression. We created a human calcification endophenotype module (ie, the "calcificasome") by mapping vascular calcification genes (proteins) to the human vascular smooth muscle-specific protein-protein interactome (218 nodes and 632 edges, P < 10-5 ). Network proximity analysis was used to demonstrate that the calcificasome overlapped significantly with endophenotype modules governing inflammation, thrombosis, and fibrosis in the human interactome (P < 0.001). A network-based drug repurposing analysis further revealed that everolimus, temsirolimus, and pomalidomide are predicted to target the calcificasome. The efficacy of these agents in limiting calcification was confirmed experimentally by treating human coronary artery smooth muscle cells in an in vitro calcification assay. Each of the drugs affected expression or activity of their predicted target in the network, and decreased calcification significantly (P < 0.009). An integrated network analytical approach identified novel mediators of ectopic cardiovascular calcification and biologically plausible candidate drugs that could be repurposed to target calcification. This methodological framework for drug repurposing has broad applicability to other diseases.


Asunto(s)
Calcinosis/tratamiento farmacológico , Calcinosis/patología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/patología , Preparaciones Farmacéuticas/administración & dosificación , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/patología , Células Cultivadas , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Trombosis/tratamiento farmacológico , Trombosis/patología
9.
BMC Cardiovasc Disord ; 21(1): 497, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649522

RESUMEN

BACKGROUND: Studies relying on self-reported sleep data suggest that there is an association between short and long sleep duration and less than ideal cardiovascular health. Evidence regarding the feasibility of using digital health devices to measure sleep duration and assess its relationship to ideal cardiovascular health are lacking. The objective of the present study was to utilize digital health devices to record sleep duration and examine the relationship between sleep duration and ideal cardiovascular health. METHODS: A total of 307 participants transmitted sleep duration data from digital health devices and answered the Life's Simple 7 survey instrument to assess ideal cardiovascular health. Sleep duration was defined as adequate (7 to < 9 h per night) or non-adequate (< 7 h and ≥ 9 h). RESULTS: We identified three sleep-cardiovascular health phenogroups: resilient (non-adequate sleep and ideal cardiovascular health), uncoupled (adequate sleep and non-ideal cardiovascular health) or concordant (sleep and cardiovascular health metrics were aligned). Participants in the resilient phenogroup (n = 83) had better cardiovascular health factor profiles (blood pressure, blood glucose and cholesterol levels) and behaviors (healthy weight, diet, exercise, smoking) than participants in the concordant (n = 171) and uncoupled (n = 53) phenogroups. This was associated with higher Life's Simple 7 Health Scores in the resilient phenogroup compared to the concordant and uncoupled phenogroups (7.8 ± 0.8 vs. 7.0 ± 1.4 vs. 5.6 ± 0.7, P < 0.01). CONCLUSION: This study identified three distinct sleep-ideal cardiovascular health phenogroups and highlights the advantage of incorporating sleep assessments into studies of cardiovascular health. Future studies should focus on the relationship between sleep-cardiovascular phenogroups and clinical outcomes. Clinical Trial Registration Clinicaltrials.gov NCT02958098. Date of registration: November 11, 2016.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Monitores de Ejercicio , Indicadores de Salud , Estado de Salud , Tecnología de Sensores Remotos/instrumentación , Sueño , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Encuestas y Cuestionarios , Factores de Tiempo
10.
Am J Respir Crit Care Med ; 201(2): 224-239, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31545648

RESUMEN

Rationale: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder in which inflammation and immunity have emerged as critical early pathogenic elements. Although proinflammatory processes in PH and pulmonary arterial hypertension (PAH) are the focus of extensive investigation, the initiating mechanisms remain elusive.Objectives: We tested whether activation of the complement cascade is critical in regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and can serve as a prognostic biomarker of outcome in human PAH.Methods: We used immunostaining of lung tissues from experimental PH models and patients with PAH, analyses of genetic murine models lacking specific complement components or circulating immunoglobulins, cultured human pulmonary adventitial fibroblasts, and network medicine analysis of a biomarker risk panel from plasma of patients with PAH.Measurements and Main Results: Pulmonary perivascular-specific activation of the complement cascade was identified as a consistent critical determinant of PH and PAH in experimental animal models and humans. In experimental hypoxic PH, proinflammatory and pro-proliferative responses were dependent on complement (alternative pathway and component 5), and immunoglobulins, particularly IgG, were critical for activation of the complement cascade. We identified Csf2/GM-CSF as a primary complement-dependent inflammatory mediator. Furthermore, using network medicine analysis of a biomarker risk panel from plasma of patients with PAH, we demonstrated that complement signaling can serve as a prognostic factor for clinical outcome in PAH.Conclusions: This study establishes immunoglobulin-driven dysregulated complement activation as a critical pathobiological mechanism regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and demonstrates complement signaling as a critical determinant of clinical outcome in PAH.


Asunto(s)
Activación de Complemento/inmunología , Fibroblastos/inmunología , Hipertensión Pulmonar/inmunología , Inmunoglobulina G/inmunología , Remodelación Vascular/inmunología , Animales , Complemento C3/inmunología , Complemento C5/inmunología , Factor B del Complemento/inmunología , Vía Alternativa del Complemento/inmunología , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Inmunoglobulinas/inmunología , Inflamación , Ratones , Ratones Noqueados , Pronóstico , Hipertensión Arterial Pulmonar/inmunología , Ratas
14.
Circ Res ; 122(9): 1302-1315, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29700074

RESUMEN

Precision medicine is an integrative approach to cardiovascular disease prevention and treatment that considers an individual's genetics, lifestyle, and exposures as determinants of their cardiovascular health and disease phenotypes. This focus overcomes the limitations of reductionism in medicine, which presumes that all patients with the same signs of disease share a common pathophenotype and, therefore, should be treated similarly. Precision medicine incorporates standard clinical and health record data with advanced panomics (ie, transcriptomics, epigenomics, proteomics, metabolomics, and microbiomics) for deep phenotyping. These phenotypic data can then be analyzed within the framework of molecular interaction (interactome) networks to uncover previously unrecognized disease phenotypes and relationships between diseases, and to select pharmacotherapeutics or identify potential protein-drug or drug-drug interactions. In this review, we discuss the current spectrum of cardiovascular health and disease, population averages and the response of extreme phenotypes to interventions, and population-based versus high-risk treatment strategies as a pretext to understanding a precision medicine approach to cardiovascular disease prevention and therapeutic interventions. We also consider the search for resilience and Mendelian disease genes and argue against the theory of a single causal gene/gene product as a mediator of the cardiovascular disease phenotype, as well as an Erlichian magic bullet to solve cardiovascular disease. Finally, we detail the importance of deep phenotyping and interactome networks and the use of this information for rational polypharmacy. These topics highlight the urgent need for precise phenotyping to advance precision medicine as a strategy to improve cardiovascular health and prevent disease.


Asunto(s)
Enfermedades Cardiovasculares , Biología Computacional , Medicina de Precisión/tendencias , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/terapia , Demografía , Descubrimiento de Drogas , Predicción , Interacción Gen-Ambiente , Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/genética , Variación Genética , Humanos , Mutación , Farmacogenética , Fenotipo
15.
Circ Res ; 122(6): 864-876, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29437835

RESUMEN

RATIONALE: Current methods assessing clinical risk because of exercise intolerance in patients with cardiopulmonary disease rely on a small subset of traditional variables. Alternative strategies incorporating the spectrum of factors underlying prognosis in at-risk patients may be useful clinically, but are lacking. OBJECTIVE: Use unbiased analyses to identify variables that correspond to clinical risk in patients with exercise intolerance. METHODS AND RESULTS: Data from 738 consecutive patients referred for invasive cardiopulmonary exercise testing at a single center (2011-2015) were analyzed retrospectively (derivation cohort). A correlation network of invasive cardiopulmonary exercise testing parameters was assembled using |r|>0.5. From an exercise network of 39 variables (ie, nodes) and 98 correlations (ie, edges) corresponding to P<9.5e-46 for each correlation, we focused on a subnetwork containing peak volume of oxygen consumption (pVo2) and 9 linked nodes. K-mean clustering based on these 10 variables identified 4 novel patient clusters characterized by significant differences in 44 of 45 exercise measurements (P<0.01). Compared with a probabilistic model, including 23 independent predictors of pVo2 and pVo2 itself, the network model was less redundant and identified clusters that were more distinct. Cluster assignment from the network model was predictive of subsequent clinical events. For example, a 4.3-fold (P<0.0001; 95% CI, 2.2-8.1) and 2.8-fold (P=0.0018; 95% CI, 1.5-5.2) increase in hazard for age- and pVo2-adjusted all-cause 3-year hospitalization, respectively, were observed between the highest versus lowest risk clusters. Using these data, we developed the first risk-stratification calculator for patients with exercise intolerance. When applying the risk calculator to patients in 2 independent invasive cardiopulmonary exercise testing cohorts (Boston and Graz, Austria), we observed a clinical risk profile that paralleled the derivation cohort. CONCLUSIONS: Network analyses were used to identify novel exercise groups and develop a point-of-care risk calculator. These data expand the range of useful clinical variables beyond pVo2 that predict hospitalization in patients with exercise intolerance.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Tolerancia al Ejercicio , Anciano , Prueba de Esfuerzo/estadística & datos numéricos , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad
16.
Am J Respir Crit Care Med ; 195(12): 1661-1670, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28430547

RESUMEN

The Division of Lung Diseases of the NHLBI and the Cardiovascular Medical Education and Research Fund held a workshop to discuss how to leverage the anticipated scientific output from the recently launched "Redefining Pulmonary Hypertension through Pulmonary Vascular Disease Phenomics" (PVDOMICS) program to develop newer approaches to pulmonary vascular disease. PVDOMICS is a collaborative, protocol-driven network to analyze all patient populations with pulmonary hypertension to define novel pulmonary vascular disease (PVD) phenotypes. Stakeholders, including basic, translational, and clinical investigators; clinicians; patient advocacy organizations; regulatory agencies; and pharmaceutical industry experts, joined to discuss the application of precision medicine to PVD clinical trials. Recommendations were generated for discussion of research priorities in line with NHLBI Strategic Vision Goals that include: (1) A national effort, involving all the stakeholders, should seek to coordinate biosamples and biodata from all funded programs to a web-based repository so that information can be shared and correlated with other research projects. Example programs sponsored by NHLBI include PVDOMICS, Pulmonary Hypertension Breakthrough Initiative, the National Biological Sample and Data Repository for PAH, and the National Precision Medicine Initiative. (2) A task force to develop a master clinical trials protocol for PVD to apply precision medicine principles to future clinical trials. Specific features include: (a) adoption of smaller clinical trials that incorporate biomarker-guided enrichment strategies, using adaptive and innovative statistical designs; and (b) development of newer endpoints that reflect well-defined and clinically meaningful changes. (3) Development of updated and systematic variables in imaging, hemodynamic, cellular, genomic, and metabolic tests that will help precisely identify individual and shared features of PVD and serve as the basis of novel phenotypes for therapeutic interventions.


Asunto(s)
Hipertensión Pulmonar/terapia , Medicina de Precisión/métodos , Educación , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
19.
Circulation ; 133(13): 1240-8, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26873944

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is associated with increased morbidity across the cardiopulmonary disease spectrum. Based primarily on expert consensus opinion, PH is defined by a mean pulmonary artery pressure (mPAP) ≥25 mm Hg. Although mPAP levels below this threshold are common among populations at risk for PH, the relevance of mPAP <25 mm Hg to clinical outcome is unknown. METHODS AND RESULTS: We analyzed retrospectively all US veterans undergoing right heart catheterization (2007-2012) in the Veterans Affairs healthcare system (n=21,727; 908-day median follow-up). Cox proportional hazards models were used to evaluate the association between mPAP and outcomes of all-cause mortality and hospitalization, adjusted for clinical covariates. When treating mPAP as a continuous variable, the mortality hazard increased beginning at 19 mm Hg (hazard ratio [HR]=1.183; 95% confidence interval [CI], 1.004-1.393) relative to 10 mm Hg. Therefore, patients were stratified into 3 groups: (1) referent (≤18 mm Hg; n=4,207); (2) borderline PH (19-24 mm Hg; n=5,030); and (3) PH (≥25 mm Hg; n=12,490). The adjusted mortality hazard was increased for borderline PH (HR=1.23; 95% CI, 1.12-1.36; P<0.0001) and PH (HR=2.16; 95% CI, 1.96-2.38; P<0.0001) compared with the referent group. The adjusted hazard for hospitalization was also increased in borderline PH (HR=1.07; 95% CI, 1.01-1.12; P=0.0149) and PH (HR=1.15; 95% CI, 1.09-1.22; P<0.0001). The borderline PH cohort remained at increased risk for mortality after excluding the following high-risk subgroups: (1) patients with pulmonary artery wedge pressure >15 mm Hg; (2) pulmonary vascular resistance ≥3.0 Wood units; or (3) inpatient status at the time of right heart catheterization. CONCLUSIONS: These data illustrate a continuum of risk according to mPAP level and that borderline PH is associated with increased mortality and hospitalization. Future investigations are needed to test the generalizability of our findings to other populations and study the effect of treatment on outcome in borderline PH.


Asunto(s)
Hospitalización/tendencias , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/mortalidad , Informe de Investigación/tendencias , United States Department of Veterans Affairs/tendencias , Veteranos , Anciano , Anciano de 80 o más Años , Cateterismo Cardíaco/mortalidad , Cateterismo Cardíaco/tendencias , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mortalidad/tendencias , Estudios Retrospectivos , Estados Unidos/epidemiología
20.
Cytotherapy ; 19(6): 668-679, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28392314

RESUMEN

BACKGROUND AIMS: In this study, we demonstrate long-term persistence of human mesenchymal stromal cells (hMSCs) after intracoronary injection in a large animal model of pulmonary hypertension (PH). METHODS: Commercially available placenta-derived hMSCs were used. Experiments were conducted on 14 female Yorkshire swine. Four animals served as controls, and 10 underwent pulmonary vein (PV) banding. After 12 ± 2 weeks, PH and PV dysfunction were confirmed by right heart catheterization and cardiac magnetic resonance imaging. hMSCs were injected in the marginal branch of the right coronary artery. Tissues were harvested 6, 9 or 24 days after infusion. RESULTS: After 12 ± 2 weeks after PV banding, all subjects had increased mean pulmonary artery pressure (13.6 ± 3.6 versus 30.8 ± 4.5 mm Hg, P < 0.007) and a decrease in right ventricular ejection fraction from 51.7 ± 5.7% versus 30.5 ± 11.3% (P = 0.003). Intracoronary injection of hMSCs was well tolerated. Up to 24 days after hMSC injection, immunohistochemistry revealed extravascular viable human CD105+ mononuclear cells in the right ventricle (RV) that were Ki67+. This was confirmed by fluorescence in situ hybridization. CD45+ porcine inflammatory cells were identified, commonly seen adjacent to areas of healing microscopic infarction that likely dated to the time of the original hMSC injection. Anti-CD31 staining produced strong signals in areas of injected hMSCs. Immunohistochemistry staining for vascular cell adhesion molecule-1 showed upregulation in the clusters, where mononuclear cells were located. CONCLUSIONS: hMSCs injected via intracoronary infusion survived up to 24 days and demonstrated proliferative capacity. hMSCs can persist long term in the RV and are potential cell source for tissue repair in RV dysfunction.


Asunto(s)
Hipertensión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Miocardio/patología , Animales , Proliferación Celular , Femenino , Ventrículos Cardíacos/patología , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/mortalidad , Hibridación Fluorescente in Situ , Inyecciones Intraarteriales , Antígenos Comunes de Leucocito/genética , Células Madre Mesenquimatosas/metabolismo , Placenta/citología , Embarazo , Porcinos , Función Ventricular Derecha
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA