Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Virol J ; 17(1): 24, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054488

RESUMEN

BACKGROUND: Dengue virus (DENV) infects hundreds of thousands of people annually in Indonesia. However, DENV sequence data from the country are limited, as samples from outbreaks must be shipped across long-distances to suitably equipped laboratories to be sequenced. This approach is time-consuming, expensive, and frequently results in failure due to low viral load or degradation of the RNA genome. METHODS: We evaluated a method designed to address this challenge, using the 'Primal Scheme' multiplex PCR tiling approach to rapidly generate short, overlapping amplicons covering the complete DENV coding-region, and sequencing the amplicons on the portable Nanopore MinION device. The resulting sequence data was assessed in terms of genome coverage, consensus sequence accuracy and by phylogenetic analysis. RESULTS: The multiplex approach proved capable of producing near complete coding-region coverage from all samples tested ([Formula: see text] = 99.96%, n = 18), 61% of which could not be fully amplified using the current, long-amplicon PCR, approach. Nanopore-generated consensus sequences were found to be between 99.17-99.92% identical to those produced by high-coverage Illumina sequencing. Consensus accuracy could be improved by masking regions below 20X coverage depth (99.69-99.92%). However, coding-region coverage was reduced at this depth ([Formula: see text] = 93.48%). Nanopore and Illumina consensus sequences generated from the same samples formed monophyletic clades on phylogenetic analysis, and Indonesian consensus sequences accurately clustered by geographical origin. CONCLUSION: The multiplex, short-amplicon approach proved superior for amplifying DENV genomes from clinical samples, particularly when the virus was present at low concentrations. The accuracy of Nanopore-generated consensus sequences from these amplicons was sufficient for identifying the geographic origin of the samples, demonstrating that the approach can be a useful tool for identifying and monitoring DENV clades circulating in low-resource settings across Indonesia. However, the inaccuracies in Nanopore-generated consensus sequences mean that the approach may not be appropriate for higher resolution transmission studies, particularly when more accurate sequencing technologies are available.


Asunto(s)
Virus del Dengue/genética , Genoma Viral , Reacción en Cadena de la Polimerasa Multiplex/métodos , Nanoporos , Análisis de Secuencia de ADN/métodos , Dengue/virología , Virus del Dengue/clasificación , Humanos , Indonesia , Filogenia
2.
J Virol ; 91(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202767

RESUMEN

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis globally. HEV comprises four genotypes with different geographic distributions and host ranges. We utilize this natural case-control study for investigating the evolution of zoonotic viruses compared to single-host viruses, using 244 near-full-length HEV genomes. Genome-wide estimates of the ratio of nonsynonymous to synonymous evolutionary changes (dN/dS ratio) located a region of overlapping reading frames, which is subject to positive selection in genotypes 3 and 4. The open reading frames (ORFs) involved have functions related to host-pathogen interaction, so genotype-specific evolution of these regions may reflect their fitness. Bayesian inference of evolutionary rates shows that genotypes 3 and 4 have significantly higher rates than genotype 1 across all ORFs. Reconstruction of the phylogenies of zoonotic genotypes demonstrates significant intermingling of isolates between hosts. We speculate that the genotype-specific differences may result from cyclical adaptation to different hosts in genotypes 3 and 4.IMPORTANCE Hepatitis E virus (HEV) is increasingly recognized as a pathogen that affects both the developing and the developed world. While most often clinically mild, HEV can be severe or fatal in certain demographics, such as expectant mothers. Like many other viral pathogens, HEV has been classified into several distinct genotypes. We show that most of the HEV genome is evolutionarily constrained. One locus of positive selection is unusual in that it encodes two distinct protein products. We are the first to detect positive selection in this overlap region. Genotype 1, which infects humans only, appears to be evolving differently from genotypes 3 and 4, which infect multiple species, possibly because genotypes 3 and 4 are unable to achieve the same fitness due to repeated host jumps.


Asunto(s)
Evolución Biológica , Genoma Viral/genética , Virus de la Hepatitis E/genética , Especificidad del Huésped/genética , Interacciones Huésped-Patógeno/genética , Animales , Secuencia de Bases , Estudios de Casos y Controles , Genotipo , Hepatitis E/virología , Virus de la Hepatitis E/aislamiento & purificación , Humanos , Sistemas de Lectura Abierta/genética , Filogenia , Análisis de Secuencia de ADN , Porcinos , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA