Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
BMC Biol ; 18(1): 14, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050986

RESUMEN

BACKGROUND: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.


Asunto(s)
Coturnix/genética , Genoma , Rasgos de la Historia de Vida , Enfermedades de las Aves de Corral/genética , Conducta Social , Animales , Estaciones del Año
2.
J Exp Biol ; 222(Pt 10)2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30975742

RESUMEN

The interaction between the gut microbiota (GM) and the brain has led to the concept of the microbiota-gut-brain axis but data for birds remain scarce. We tested the hypothesis that colonization of germ-free chicks from a quail line selected for a high emotional reactivity (E+) with GM from a line with low emotional reactivity (E-) would reduce their emotional behaviour in comparison with germ-free chicks from an E+ line colonized with GM from the same E+ line. The GM composition analysis of both groups revealed a shift in terms of microbial diversity and richness between day 21 and day 35 and the GM of the two groups of quails were closer to each other at day 35 than at day 21 at a phylum level. Quails that received GM from the E- line expressed a lower emotional reactivity than quails colonized by GM from the E+ line in tonic immobility and novel environment tests carried out during the second week of age. This result was reversed in a second tonic immobility test and an open-field run 2 weeks later. These behavioural and GM modifications over time could be the consequence of the resilience of the GM to recover the equilibrium present in the E+ host, which is in part driven by the host genotype. This study shows for the first time that a GM transfer can influence emotional reactivity in Japanese quails, supporting the existence of a microbiota-gut-brain axis in this species of bird.


Asunto(s)
Coturnix/fisiología , Emociones , Microbioma Gastrointestinal/fisiología , Animales , Conducta Animal , Coturnix/microbiología , Femenino
3.
Mol Ecol ; 26(14): 3700-3714, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28394503

RESUMEN

Detecting genomic footprints of selection is an important step in the understanding of evolution. Accounting for linkage disequilibrium in genome scans increases detection power, but haplotype-based methods require individual genotypes and are not applicable on pool-sequenced samples. We propose to take advantage of the local score approach to account for linkage disequilibrium in genome scans for selection, cumulating (possibly small) signals from single markers over a genomic segment, to clearly pinpoint a selection signal. Using computer simulations, we demonstrate that this approach detects selection with higher power than several state-of-the-art single-marker, windowing or haplotype-based approaches. We illustrate this on two benchmark data sets including individual genotypes, for which we obtain similar results with the local score and one haplotype-based approach. Finally, we apply the local score approach to Pool-Seq data obtained from a divergent selection experiment on behaviour in quail and obtain precise and biologically coherent selection signals: while competing methods fail to highlight any clear selection signature, our method detects several regions involving genes known to act on social responsiveness or autistic traits. Although we focus here on the detection of positive selection from multiple population data, the local score approach is general and can be applied to other genome scans for selection or other genomewide analyses such as GWAS.


Asunto(s)
Genotipo , Haplotipos , Desequilibrio de Ligamiento , Modelos Genéticos , Selección Genética , Animales , Simulación por Computador , Polimorfismo de Nucleótido Simple , Codorniz/genética
4.
Genet Sel Evol ; 49(1): 14, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28125975

RESUMEN

BACKGROUND: Environmental exposures, for instance to chemicals, are known to impact plant and animal phenotypes on the long term, sometimes across several generations. Such transgenerational phenotypes were shown to be promoted by epigenetic alterations such as DNA methylation, an epigenetic mark involved in the regulation of gene expression. However, it is yet unknown whether transgenerational epigenetic inheritance of altered phenotypes exists in birds. The purpose of this study was to develop an avian model to investigate whether changes to the embryonic environment had a transgenerational effect that could alter the phenotypes of third-generation offspring. Given its impact on the mammalian epigenome and the reproductive system in birds, genistein was used as an environment stressor. RESULTS: We compared several third-generation phenotypes of two quail "epilines", which were obtained from genistein-injected eggs (Epi+) or from untreated eggs (Epi-) from the same founders. A "mirrored" crossing strategy was used to minimize between-line genetic variability by maintaining similar ancestor contributions across generations in each line. Three generations after genistein treatment, a significant difference in the sexual maturity of the females, which, after three generations, could not be attributed to direct maternal effects, was observed between the lines, with Epi+ females starting to lay eggs later. Adult body weight was significantly affected by genistein treatment applied in a previous generation, and a significant interaction between line and sex was observed for body weight at 3 weeks. Behavioral traits, such as evaluating the birds' reaction to social isolation, were also significantly affected by genistein treatment. Yet, global methylation analyses revealed no significant difference between the epilines. CONCLUSIONS: These findings demonstrate that embryonic environment affects the phenotype of offspring three generations later in quail. While one cannot rule out the existence of some initial genetic variability between the lines, the mirrored animal design should have minimized its effects, and thus, the observed differences in animals of the third generation may be attributed, at least partly, to transgenerational epigenetic phenomena.


Asunto(s)
Desarrollo Embrionario/genética , Ambiente , Interacción Gen-Ambiente , Codorniz/embriología , Codorniz/genética , Animales , Conducta Animal , Peso Corporal/genética , Metilación de ADN , Epigénesis Genética , Femenino , Estudios de Asociación Genética , Masculino , Fenotipo , Carácter Cuantitativo Heredable , Reproducción/genética , Temperatura
5.
Dev Psychobiol ; 58(2): 185-97, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26419601

RESUMEN

In this study, we assessed whether prenatal exposure to elevated yolk steroid hormones can influence in ovo chemosensory learning and the behavior of domestic chicks. We simulated a maternal environmental challenge by experimentally enhancing yolk progesterone, testosterone, and estradiol concentrations in hen eggs prior to incubation. The embryos from these hormones-treated eggs (HO) as well as sham embryos (O) that had received the vehicle-only were exposed to the odor of fish oil (menhaden) between embryonic Days 11 and 20. An additional group of control embryos (C) was not exposed to the odor. All chicks were tested following hatching for their feeding preferences between foods that were or were not odorized with the menhaden odor. In the 3-min choice tests, the behavior of O chicks differed significantly according to the type of food whereas C and HO chicks showed no preference between odorized and non-odorized food. Our result suggests weaker response in HO chicks. In addition, HO chicks showed impaired growth and reduced intake of an unfamiliar food on the 24-h time scale compared to controls. Our data suggest that embryonic exposure to increased yolk hormone levels can alter growth, chemosensory learning, and the development of feeding behaviors.


Asunto(s)
Conducta Animal/efectos de los fármacos , Pollos/crecimiento & desarrollo , Estradiol/farmacología , Conducta Alimentaria/efectos de los fármacos , Hormonas/farmacología , Aprendizaje/efectos de los fármacos , Progesterona/farmacología , Testosterona/farmacología , Andrógenos/farmacología , Animales , Animales Recién Nacidos , Embrión de Pollo , Yema de Huevo/química , Estrógenos/farmacología , Femenino , Aceites de Pescado , Preferencias Alimentarias/efectos de los fármacos , Odorantes , Embarazo , Progestinas/farmacología
6.
BMC Genomics ; 16: 10, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25609057

RESUMEN

BACKGROUND: Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. All the birds were measured for several social behaviors (social reinstatement, response to social isolation, sexual motivation, aggression), behaviors measuring the emotional reactivity of the birds (reaction to an unknown object, tonic immobility reaction), and production traits (body weight and egg production). RESULTS: We report the results of the first genome-wide QTL detection based on a medium density SNP panel obtained from whole genome sequencing of a pool of individuals from each divergent line. A genetic map was constructed using 2145 markers among which 1479 could be positioned on 28 different linkage groups. The sex-averaged linkage map spanned a total of 3057 cM with an average marker spacing of 2.1 cM. With the exception of a few regions, the marker order was the same in Japanese Quail and the chicken, which confirmed a well conserved synteny between the two species. The linkage analyses performed using QTLMAP software revealed a total of 45 QTLs related either to behavioral (23) or production (22) traits. The most numerous QTLs (15) concerned social motivation traits. Interestingly, our results pinpointed putative pleiotropic regions which controlled emotional reactivity and body-weight of birds (on CJA5 and CJA8) or their social motivation and the onset of egg laying (on CJA19). CONCLUSION: This study identified several QTL regions for social and emotional behaviors in the Quail. Further research will be needed to refine the QTL and confirm or refute the role of candidate genes, which were suggested by bioinformatics analysis. It can be hoped that the identification of genes and polymorphisms related to behavioral traits in the quail will have further applications for other poultry species (especially the chicken) and will contribute to solving animal welfare issues in poultry production.


Asunto(s)
Coturnix/genética , Sitios de Carácter Cuantitativo , Animales , Pollos/genética , Mapeo Cromosómico , Ligamiento Genético , Genoma , Polimorfismo de Nucleótido Simple , Reproducción/genética , Análisis de Secuencia de ADN , Conducta Sexual Animal , Conducta Social
7.
BMC Genomics ; 13: 551, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23066875

RESUMEN

BACKGROUND: As for other non-model species, genetic analyses in quail will benefit greatly from a higher marker density, now attainable thanks to the evolution of sequencing and genotyping technologies. Our objective was to obtain the first genome wide panel of Japanese quail SNP (Single Nucleotide Polymorphism) and to use it for the fine mapping of a QTL for a fear-related behaviour, namely tonic immobility, previously localized on Coturnix japonica chromosome 1. To this aim, two reduced representations of the genome were analysed through high-throughput 454 sequencing: AFLP (Amplified Fragment Length Polymorphism) fragments as representatives of genomic DNA, and EST (Expressed Sequence Tag) as representatives of the transcriptome. RESULTS: The sequencing runs produced 399,189 and 1,106,762 sequence reads from cDNA and genomic fragments, respectively. They covered over 434 Mb of sequence in total and allowed us to detect 17,433 putative SNP. Among them, 384 were used to genotype two Advanced Intercross Lines (AIL) obtained from three quail lines differing for duration of tonic immobility. Despite the absence of genotyping for founder individuals in the analysis, the previously identified candidate region on chromosome 1 was refined and led to the identification of a candidate gene. CONCLUSIONS: These data confirm the efficiency of transcript and AFLP-sequencing for SNP discovery in a non-model species, and its application to the fine mapping of a complex trait. Our results reveal a significant association of duration of tonic immobility with a genomic region comprising the DMD (dystrophin) gene. Further characterization of this candidate gene is needed to decipher its putative role in tonic immobility in Coturnix.


Asunto(s)
Proteínas Aviares/genética , Mapeo Cromosómico , Coturnix/genética , Distrofina/genética , Estudios de Asociación Genética , Genoma , Pérdida de Tono Postural , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Pollos/genética , Cromosomas , Cruzamientos Genéticos , Etiquetas de Secuencia Expresada , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Transcriptoma
8.
Front Vet Sci ; 9: 814054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198623

RESUMEN

Recent research on free-range chickens shows that individual behavioral differences may link to range use. However, most of these studies explored individual behavioral differences only at one time point or during a short time window, assessed differences when animals were out of their social group and home environment (barn and range), and in specific tests or situations. Therefore, it is yet unclear how different behaviors relate to range use and how consistent these behaviors are at the individual level. To fill this gap, we here aimed to describe the behavioral budget of slow-growing male broiler chickens (S757N) when in their social group and home environment during the whole rearing period (from the second week of life to the twelfth week, before slaughter), and to relate observed behavioral differences to range use. For this, we followed a sample of individuals in two flocks (n = 60 focal chickens out of 200 chickens per flock), over two seasons, during three periods: before range access (from 14 to 25 days old), during early range access (first weeks of range access, from 37 to 53 days old), and during late range access (last weeks of range access, from 63 to 87 days old). By the end of each period, individual tests of exploration and social motivation were also performed, measuring exploration/activity and sociability propensities. Our results show that foraging (i.e., pecking and scratching at the ground) was the only behavior that correlated to range use for all three rearing periods, independent of the season. Foraging was also the only behavior that showed within-individual consistency from an early age and across the three rearing periods. Foraging may, therefore, serve as a useful behavioral predictor of range use in free-range broiler chickens. Our study increases the knowledge of how behaviors develop and relate to each other in a domesticated and intensely selected species, and improves our understanding of the biology of free-range broiler chickens. These findings can, ultimately, serve as a foundation to increase range use and improve chicken welfare.

9.
Psychoneuroendocrinology ; 136: 105594, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34875421

RESUMEN

Chronic stress and the gut microbiota appear to comprise a feed-forward loop, which contributes to the development of depressive disorders. Evidence suggests that memory can also be impaired by either chronic stress or microbiota imbalance. However, it remains to be established whether these could be a part of an integrated loop model and be responsible for memory impairments. To shed light on this, we used a two-pronged approach in Japanese quail: first stress-induced alterations in gut microbiota were characterized, then we tested whether this altered microbiota could affect brain and memory function when transferred to a germ-free host. The cecal microbiota of chronically stressed quails was found to be significantly different from that of unstressed individuals with lower α and ß diversities and increased Bacteroidetes abundance largely represented by the Alistipes genus, a well-known stress target in rodents and humans. The transfer of this altered microbiota into germ-free quails decreased their spatial and cue-based memory abilities as previously demonstrated in the stressed donors. The recipients also displayed increased anxiety-like behavior, reduced basal plasma corticosterone levels and differential gene expression in the brain. Furthermore, cecal microbiota transfer from a chronically stressed individual was sufficient to mimic the adverse impact of chronic stress on memory in recipient hosts and this action may be related to the Alistipes genus. Our results provide evidence of a feed-forward loop system linking the microbiota-gut-brain axis to stress and memory function and suggest that maintaining a healthy microbiota could help alleviate memory impairments linked to chronic stress.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ansiedad/metabolismo , Corticosterona , Coturnix , Trastornos de la Memoria
10.
Front Vet Sci ; 9: 952922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990274

RESUMEN

In free-range and organic production systems, hens can make choices according to their needs and desires, which is in accordance with welfare definitions. Nonetheless, health and behavioral problems are also encountered in these systems. The aim of this article was to identify welfare challenges observed in these production systems in the EU and the most promising solutions to overcome these challenges. It is based on a review of published literature and research projects complemented by interviews with experts. We selected EU specific information for welfare problems, however, the selected literature regarding solutions is global. Free range use may increase the risk of infection by some bacteria, viruses and parasites. Preventive methods include avoiding contamination thanks to biosecurity measures and strengthening animals' natural defenses against these diseases which can be based on nutritional means with new diet components such as insect-derived products, probiotics and prebiotics. Phytotherapy and aromatherapy can be used as preventive and curative medicine and vaccines as alternatives to antibiotics and pesticides. Bone quality in pullets and hens prevents keel deviations and is favored by exercise in the outdoor range. Free range use also lead to higher exposure to variable weather conditions and predators, therefore shadow, fences and guard animals can be used to prevent heat stress and predation respectively. Granting a free range provides opportunities for the expression of many behaviors and yet many hens usually stay close to the house. Providing the birds with trees, shelters or attractive plants can increase range use. Small flock sizes, early experiences of enrichment and personality traits have also been found to enhance range use. Severe feather pecking can occur in free range production systems, although flocks using the outdoor area have better plumage than indoors. While many prevention strategies are facilitated in free range systems, the influence of genetics, prenatal and nutritional factors in free range hens still need to be investigated. This review provides information about practices that have been tested or still need to be explored and this information can be used by stakeholders and researchers to help them evaluate the applicability of these solutions for welfare improvement.

11.
Behav Brain Res ; 408: 113280, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33819534

RESUMEN

Chronic stress profoundly affects forms of declarative memory, such as spatial memory, while it may spare non-declarative memory, such as cue-based memory. It is known, however, that the effects of chronic stress on memory systems may vary according to the level of training of an individual was submitted. Here, we investigated, in birds, how chronic stress impact spatial and cue-based memories according to training level. For that, control and chronically stressed Japanese quail were trained in a task that could be solved using spatial and cue-based memory and tested for their memory performance after 5 and 15 training days (initial training and overtraining, respectively) and following an emotional challenge (exposure to an open field). Our results showed that, compared to control quail, chronic stress impacted negatively spatial memory performances in stressed birds after initial training, but these differences were lowered after overtraining. Control birds seemed to shift from spatial to cue-based memory to solve the task across overtraining. However, an emotional challenge before testing reinstated the negative impact of chronic stress on spatial memory performances between the groups, revealing that chronic stress/overtraining did not eliminate the spatial memory and differences caused by stressors can reemerge depending on the individual's immediate psychological state. Contrary to spatial memory, cue-based memory was not affected in chronically stressed birds compared to control birds in any test occasion, confirming its resistance against the negative effects of chronic stress. Altogether these findings reveal a dynamic dialogue between stress, training level, and memory systems in birds.


Asunto(s)
Conducta Animal/fisiología , Señales (Psicología) , Práctica Psicológica , Desempeño Psicomotor/fisiología , Memoria Espacial/fisiología , Estrés Psicológico/fisiopatología , Animales , Coturnix , Masculino
12.
Sci Rep ; 11(1): 6253, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737689

RESUMEN

When animals prefer to make efforts to obtain food instead of acquiring it from freely available sources, they exhibit what is called contrafreeloading. Recently, individual differences in behavior, such as exploration, were shown to be linked to how prone an individual may be to contrafreeload. In this work, our main objective was to test whether and how individual differences in range use of free-range broiler chickens (Gallus gallus domesticus) were related to the individual motivation to contrafreeload. We also verified whether other behavioral variations could relate to range use. To that aim, over three different periods (before range access, first weeks of range access, and last weeks of range access), chickens with different ranging levels (low and high rangers) were submitted to a contrafreeloading test and had different behaviors recorded (such as foraging, resting, locomotion) in their home environment. During the contrafreeloading test, chickens were conditioned to one chamber presenting a foraging substrate and mealworms, while in the other chamber, mealworms were freely available on the floor. During testing trials, chickens had access to both empty chambers, and the time spent in each chamber was quantified. On average, low rangers preferred the chamber where mealworms were easily accessible (without the foraging substrate), while high rangers preferred the chamber where mealworms were accessible with difficulty, showing greater contrafreeloading. Out of ten behaviors recorded in chickens' home environment, foraging was the only one that differed significantly between our two ranging groups, with low rangers foraging, on average, significantly less than high rangers. These results corroborate previous experiences suggesting that range use is probably linked to chickens' exploratory trait and suggest that individual differences in free-range broiler chickens are present even before range access. Increasing our knowledge of individual particularities is a necessary step to improve free-range chicken welfare on the farm.


Asunto(s)
Pollos/fisiología , Conducta Exploratoria/fisiología , Conducta Alimentaria/psicología , Motivación/fisiología , Caminata/fisiología , Alimentación Animal , Animales , Ambiente , Granjas , Masculino , Tenebrio
13.
Poult Sci ; 99(1): 61-66, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32416848

RESUMEN

The Japanese quail is a powerful model to characterize behavioral, physiological, and neurobiological processes in Galliformes. Behavioral tests have already been adapted for quail to assess memory systems, but despite the pivotal role of the hippocampus in this cognitive process, its involvement in spatial memory has not been demonstrated in this species. In this study, lesions were created in the hippocampus of Japanese quail, and both lesioned and control quail were tested for spatial and cue-based learning performances. These hippocampal lesions specifically impacted spatial learning performance, but spared learning performance when birds could solve the task using their cue-based memory. These findings, thus, highlight that the hippocampus plays a crucial role and is essential for spatial declarative memory. Future studies could aim to elucidate the cellular or molecular mechanisms involved in this form of memory.


Asunto(s)
Coturnix/fisiología , Señales (Psicología) , Hipocampo/fisiología , Memoria Espacial/fisiología , Animales , Masculino
14.
Sci Rep ; 10(1): 20702, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244117

RESUMEN

Chicks subjected to early stressful factors could develop long-lasting effects on their performances, welfare and health. Free access to essential oils (EO) in poultry farming could mitigate these effects and potentially reduce use of antimicrobial drugs. This study on chicken analyzed long-lasting effects of post-hatch adverse conditions (Delayed group), and the impact of EO intake on blood physiological parameters and transcriptome. Half of the Control and Delayed groups had free access to EO, while the other half had only water for the first 13 days post-hatching. Blood analyses of metabolites, inflammation and oxidative stress biomarkers, and mRNA expression showed sex differences. Long-lasting effects of postnatal experience and EO intake persisted in blood transcriptome at D34. The early adverse conditions modified 68 genes in males and 83 genes in females. In Delayed males six transcription factors were over-represented (NFE2L2, MEF2A, FOXI1, Foxd3, Sox2 and TEAD1). In females only one factor was over-represented (PLAG1) and four under-represented (NFIL3, Foxd3, ESR2 and TAL1::TCF3). The genes showing modified expression are involved in oxidative stress, growth, bone metabolism and reproduction. Remarkably, spontaneous EO intake restored the expression levels of some genes affected by the postnatal adverse conditions suggesting a mitigating effect of EO intake.


Asunto(s)
Sangre/efectos de los fármacos , Pollos/genética , Aceites Volátiles/administración & dosificación , Transcriptoma/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Pollos/metabolismo , Femenino , Inflamación/genética , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Mensajero/genética , Transcriptoma/genética
15.
Sci Rep ; 10(1): 14620, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32884096

RESUMEN

Chronic stress is a strong modulator of cognitive processes, such as learning and memory. There is, however, great within-individual variation in how an animal perceives and reacts to stressors. These differences in coping with stress modulate the development of stress-induced memory alterations. The present study investigated whether and how chronic stress and individual emotionality interrelate and influence memory performances and brain neurogenesis in birds. For that, we used two lines of Japanese quail (Coturnix japonica) with divergent emotionality levels. Highly (E+) and less (E-) emotional quail were submitted to chronic unpredictable stress (CUS) for 3 weeks and trained in a spatial task and a discrimination task, a form of cue-based memory. E + and E- birds were also used to assess the impact of CUS and emotionality on neurogenesis within the hippocampus and the striatum. CUS negatively impacted spatial memory, and cell proliferation, and survival in the hippocampus. High emotionality was associated with a decreased hippocampal neurogenesis. CUS improved discrimination performances and favored the differentiation of newborn cells into mature neurons in the striatum, specifically in E+ birds. Our results provide evidence that CUS consequences on memory and neural plasticity depends both on the memory system and individual differences in behavior.


Asunto(s)
Cuerpo Estriado/fisiología , Emociones/fisiología , Hipocampo/fisiología , Memoria/fisiología , Neurogénesis/fisiología , Estrés Psicológico/fisiopatología , Animales , Proliferación Celular/fisiología , Coturnix , Señales (Psicología) , Masculino , Aprendizaje por Laberinto/fisiología , Conducta Espacial/fisiología
16.
J Nutr ; 139(1): 38-43, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19056657

RESUMEN

Amino acids are known to be anabolic factors that affect protein metabolism, but the response of animals to daily amino acid changes is little understood. We aimed to test the effects of feeding birds with alternations of diets varying in lysine content on the expression of genes related to proteolysis in chicken muscle. Cyclic feeding programs with 2 diets, each given for 24 h during 48-h cycles, were carried out from 10 d of age. Three programs were used: 1) control treatment with continuous distribution of a complete diet containing standard medium lysine level (ML; 11.9 g/kg); 2) alternation of diets with high (HL) and low (LL) lysine levels; 3) alternation of ML and LL diets, where LL = 70%, ML = 100%, HL = 130% of standard lysine level. The Pectoralis major muscles were sampled after 2 wk of cyclic feeding. Measurements included the expression patterns of 6 genes involved in proteolysis, and mammalian target of rapamycin and Forkhead box-O transcription factor (FoxO) signaling. Cathepsin B, m-calpain, and E3 ubiquitin ligases Muscle Ring Finger-1 and Muscle Atrophy F box were significantly overexpressed in chickens transiently fed the LL diet, whereas the mRNA levels of 20S proteasome C2 subunit and ubiquitin remained unchanged. Modifications of E3 ubiquitin ligase expression can be partly explained by significant changes in FoxO phosphorylation with cyclic dietary treatments. Our results suggest timing-sensitive regulation of proteolysis in chicken muscle according to dietary treatment and a high metabolism capacity to compensate for changes in amino acid supply, which might be used for nutritional purposes.


Asunto(s)
Pollos/metabolismo , Proteínas en la Dieta/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Lisina/farmacología , Músculo Esquelético/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosforilación
17.
Front Vet Sci ; 6: 72, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30931317

RESUMEN

The postnatal period is critical for broiler chicks as they are exposed to potentially stressful environmental changes in the hatchery and during transportation to the rearing houses. The ability of broiler chicks to spontaneously drink essential oils (EO) to mitigate the effects of a negative postnatal experience was tested. Chicks were placed in the rearing facility either immediately (C group), or after a 24 h-delay period (D group) to mimic a delay in transportation possible under commercial conditions. In experiment 1, each group had access to either water only or to water and one EO (cardamom, marjoram, or verbena) from D1 to D13. Verbena EO intake was higher in the D group than in the C group from D1 to D6 and cardamom EO intake was lower in the D group than in the C group from D6 to D13. In experiment 2, half of the groups had access to water only and the other half had both water and the three EO simultaneously. Chicks from D and C groups chose the EO similarly except for cardamom EO with a lower intake being observed in the D than in the C group from D6 to D12. The delayed placement of the D group reduced chicken growth until 34 days of age and temporarily increased the feed conversion ratio, but did not affect their welfare or the prevalence of health disorders. The EO intake did not mitigate the growth reduction in D group chicks, but did mitigate the reduced Pectoralis major muscle yield. In conclusion, chicks were able to make spontaneous choices regarding EO intake according to their postnatal experience when EO were presented individually, but not when presented simultaneously as in our experimental design. The EO intake only partially mitigated the decrease in chicken performance after the negative postnatal experience.

18.
J Anim Sci Biotechnol ; 10: 21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31007908

RESUMEN

BACKGROUND: Negative experiences in early life can induce long-lasting effects on the welfare, health, and performance of farm animals. A delayed placement of chicks in rearing houses has negative effects on their performance, and results in fecal-specific odors detectable by rats. Based on this observation, the volatile organic compounds (VOCs) and metabolites from the feces of 12-day-old chickens were screened for early markers of response to negative events using gas-chromatography and liquid-chromatography coupled with mass spectrometry (GC-MS, LC-HRMS). RESULTS: The low reproducibility of solid-phase micro-extraction of the VOCs followed by GC-MS was not suitable for marker discovery, in contrast to liquid extraction of metabolites from freeze-dried feces followed by GC-MS or LC-HRMS analysis. Therefore, the fecal metabolome from 12-day-old chicks having experienced a normal or delayed placement were recorded by GC-MS and LC-HRMS in two genotypes from two experiments. From both experiments, 25 and 35 metabolites, respectively explaining 81% and 45% of the difference between delayed and control chickens, were identified by orthogonal partial least-squares discriminant analysis from LC-HRMS and GC-MS profiling. CONCLUSION: The sets of molecules identified will be useful to better understand the chicks' response to negative events over time and will contribute to define stress or welfare biomarkers. .

19.
Behav Processes ; 166: 103888, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31226335

RESUMEN

Different personalities may lead to different ways of processing environmental information; however, the relationship between personality and cognition is not fully understood as studies on diverse species present contrasting results. As there is great within-flock variability of outdoor ranging behavior in free-range broiler chickens, we tested whether and how ranging behavior impacts on individual spatial memory abilities. The experiment was conducted on one flock (n = 200) reared in the same conditions throughout the study, to simulate on-farm situations. As the ranging behavior was stable over time, we compared two distinct groups of male chickens: one that visited the range more (High rangers) and one that was more prone to staying in the poultry house (Low rangers). To test the spatial memory, individuals (n = 30) went through two main phases in an arena with 8 cups. For the familiarization phase, individuals were submitted to one trial per day, for seven days, to a situation where all eight cups were baited with mealworms. Animals had to reach a criterion of 5 cups visited out of 8 to advance to the next phase. For the spatial test, only four cups were baited and systematically placed at the same location. This last phase comprised two trials per individual per day, for nine days. During these two phases, latency to visit cups and the number of visits and revisits of all cups were recorded. Low ranger chickens took less time to attain the pre-established threshold of visiting 5 cups out of 8, over the familiarization phase. During the spatial test, the latency to visit four cups decreased between the within-day trials for low ranger chickens and increased for high ranger chickens. Moreover, in the within-day trial analysis, low ranger chickens exhibited an improvement on spatial memory and better spatial memory compared to high ranger chickens. Different speed-accuracy trade-offs may explain these differences between low and high ranger chickens and the way individuals interact and solve the task. Our study strengthens the scientific evidence relating consistent individual differences in behavior, with the ranging behavior of free-range chickens, and cognitive performance during a spatial memory task.


Asunto(s)
Conducta Animal/fisiología , Pollos/fisiología , Conducta Exploratoria/fisiología , Memoria Espacial/fisiología , Animales , Cognición/fisiología , Masculino , Personalidad/fisiología
20.
Physiol Behav ; 210: 112658, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31430443

RESUMEN

There is increasing evidence of a pivotal role of the gut microbiota (GUT-M) in key physiological functions in vertebrates. Many studies discuss functional implications of the GUT-M not only on immunity, growth, metabolism, but also on brain development and behavior. However, while the influence of the microbiota-gut-brain axis (MGBA) on behavior is documented in rodents and humans, data on farm animals are scarce. This review will first report the well-known influence of the MGBA on behavior in rodent and human and then describe its influence on emotion, memory, social and feeding behaviors in farm animals. This corpus of experiments suggests that a better understanding of the effects of the MGBA on behavior could have large implications in various fields of animal production. Specifically, animal welfare and health could be improved by selection, nutrition and management processes that take into account the role of the GUT-M in behavior.


Asunto(s)
Bienestar del Animal , Animales Domésticos/fisiología , Conducta Animal/fisiología , Encéfalo/fisiología , Microbioma Gastrointestinal/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA