Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(1): 403-413, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35201217

RESUMEN

Fourier transform holography is a lensless imaging technique that retrieves an object's exit-wave function with high fidelity. It has been used to study nanoscale phenomena and spatio-temporal dynamics in solids, with sensitivity to the phase component of electronic and magnetic textures. However, the method requires an invasive and labor-intensive nanopatterning of a holography mask directly onto the sample, which can alter the sample properties, forces a fixed field-of-view, and leads to a low signal-to-noise ratio at high resolution. In this work, we propose using wavefront-shaping diffractive optics to create a structured probe with full control of its phase at the sample plane, circumventing the need for a mask. We demonstrate in silico that the method can image nanostructures and magnetic textures and validate our approach with a visible light-based experiment. The method enables investigation of a plethora of phenomena at the nanoscale including magnetic and electronic phase coexistence in solids, with further uses in soft and biological matter research.

2.
Opt Express ; 30(2): 2247-2264, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209369

RESUMEN

Randomized probe imaging (RPI) is a single-frame diffractive imaging method that uses highly randomized light to reconstruct the spatial features of a scattering object. The reconstruction process, known as phase retrieval, aims to recover a unique solution for the object without measuring the far-field phase information. Typically, reconstruction is done via time-consuming iterative algorithms. In this work, we propose a fast and efficient deep learning based method to reconstruct phase objects from RPI data. The method, which we call deep k-learning, applies the physical propagation operator to generate an approximation of the object as an input to the neural network. This way, the network no longer needs to parametrize the far-field diffraction physics, dramatically improving the results. Deep k-learning is shown to be computationally efficient and robust to Poisson noise. The advantages provided by our method may enable the analysis of far larger datasets in photon starved conditions, with important applications to the study of dynamic phenomena in physical science and biological engineering.

3.
Opt Lett ; 47(9): 2322-2325, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486790

RESUMEN

Lensless imaging methods that account for partial coherence have become very common in the past decade. However, there are no metrics in use for comparing partially coherent light fields, despite the widespread use of such metrics to compare fully coherent objects and wave fields. Here, we show how reformulating the mean squared error and Fourier ring correlation in terms of quantum state fidelity naturally generalizes them to partially coherent wave fields. These results fill an important gap in the lensless imaging literature and will enable quantitative assessments of the reliability and resolution of reconstructed partially coherent wave fields.

4.
Opt Express ; 28(25): 37103-37117, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33379551

RESUMEN

We introduce a single-frame diffractive imaging method called randomized probe imaging (RPI). In RPI, a sample is illuminated by a structured probe field containing speckles smaller than the sample's typical feature size. Quantitative amplitude and phase images are then reconstructed from the resulting far-field diffraction pattern. The experimental geometry of RPI is straightforward to implement, requires no near-field optics, and is applicable to extended samples. When the resulting data are analyzed with a complimentary algorithm, reliable reconstructions which are robust to missing data are achieved. To realize these benefits, a resolution limit associated with the numerical aperture of the probe-forming optics is imposed. RPI therefore offers an attractive modality for quantitative X-ray phase imaging when temporal resolution and reliability are critical but spatial resolution in the tens of nanometers is sufficient. We discuss the method, introduce a reconstruction algorithm, and present two proof-of-concept experiments: one using visible light, and one using soft X-rays.

5.
Nat Commun ; 15(1): 7427, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198459

RESUMEN

In rare earth nickelates (RENiO3), electron-lattice coupling drives a concurrent metal-to-insulator and bond disproportionation phase transition whose microscopic origin has long been the subject of active debate. Of several proposed mechanisms, here we test the hypothesis that pairs of self-doped ligand holes spatially condense to provide local spin moments that are antiferromagnetically coupled to Ni spins. These singlet-like states provide a basis for long-range bond and spiral spin order. Using magnetic resonant X-ray scattering on NdNiO3 thin films, we observe the chiral nature of the spin-disproportionated state, with spin spirals propagating along the crystallographic (101)ortho direction. These spin spirals are found to preferentially couple to X-ray helicity, establishing the presence of a hitherto-unobserved macroscopic chirality. The presence of this chiral magnetic configuration suggests a potential multiferroic coupling between the noncollinear magnetic arrangement and improper ferroelectric behavior as observed in prior studies on NdNiO3 (101)ortho films and RENiO3 single crystals. Experimentally-constrained theoretical double-cluster calculations confirm the presence of an energetically stable spin-disproportionated state with Zhang-Rice singlet-like combinations of Ni and ligand moments.

6.
Sci Rep ; 14(1): 17283, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068229

RESUMEN

We report time resolved observations of the crystallization from liquid hydrogen, supercooled to temperatures below the melting point, using 11.2 keV X-ray diffraction from the Linac Coherent Light Source (LCLS). Changes to the metastable solid and liquid structure factors have been dynamically measured. This allows for a direct determination of the lowest energy crystal polymorphs, the stacking probabilities, as well as the liquid and solid densities and temperatures. Such measurements provide experimental evidence of an Arrhenius-like growth kinetics along the stacking direction during supercooling.

7.
Materials (Basel) ; 14(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279253

RESUMEN

Simultaneous high-pressure Brillouin spectroscopy and powder X-ray diffraction of cerium dioxide powders are presented at room temperature to a pressure of 45 GPa. Micro- and nanocrystalline powders are studied and the density, acoustic velocities and elastic moduli determined. In contrast to recent reports of anomalous compressibility and strength in nanocrystalline cerium dioxide, the acoustic velocities are found to be insensitive to grain size and enhanced strength is not observed in nanocrystalline CeO2. Discrepancies in the bulk moduli derived from Brillouin and powder X-ray diffraction studies suggest that the properties of CeO2 are sensitive to the hydrostaticity of its environment. Our Brillouin data give the shear modulus, G0 = 63 (3) GPa, and adiabatic bulk modulus, KS0 = 142 (9) GPa, which is considerably lower than the isothermal bulk modulus, KT0∼ 230 GPa, determined by high-pressure X-ray diffraction experiments.

8.
Nat Commun ; 10(1): 4568, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615992

RESUMEN

Strongly correlated quantum solids are characterized by an inherently granular electronic fabric, with spatial patterns that can span multiple length scales in proximity to a critical point. Here, we use a resonant magnetic X-ray scattering nanoprobe with sub-100 nm spatial resolution to directly visualize the texture of antiferromagnetic domains in NdNiO3. Surprisingly, our measurements reveal a highly textured magnetic fabric, which we show to be robust and nonvolatile even after thermal erasure across its ordering temperature. The scale-free distribution of antiferromagnetic domains and its non-integral dimensionality point to a hitherto-unobserved magnetic fractal geometry in this system. These scale-invariant textures directly reflect the continuous nature of the magnetic transition and the proximity of this system to a critical point. The present study not only exposes the near-critical behavior in rare earth nickelates but also underscores the potential for X-ray scattering nanoprobes to image the multiscale signatures of criticality near a critical point.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA