Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(2): 258-272.e17, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388410

RESUMEN

A complex interplay of environmental factors impacts the metabolism of human cells, but neither traditional culture media nor mouse plasma mimic the metabolite composition of human plasma. Here, we developed a culture medium with polar metabolite concentrations comparable to those of human plasma (human plasma-like medium [HPLM]). Culture in HPLM, relative to that in traditional media, had widespread effects on cellular metabolism, including on the metabolome, redox state, and glucose utilization. Among the most prominent was an inhibition of de novo pyrimidine synthesis-an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.


Asunto(s)
Medios de Cultivo/química , Complejos Multienzimáticos/antagonistas & inhibidores , Orotato Fosforribosiltransferasa/antagonistas & inhibidores , Orotidina-5'-Fosfato Descarboxilasa/antagonistas & inhibidores , Ácido Úrico/metabolismo , Anciano , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Fluorouracilo/farmacología , Glucosa/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Persona de Mediana Edad , Complejos Multienzimáticos/química , Orotato Fosforribosiltransferasa/química , Orotidina-5'-Fosfato Descarboxilasa/química , Dominios Proteicos , Pirimidinas/biosíntesis
2.
Mol Cell ; 81(4): 691-707.e6, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33382985

RESUMEN

Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is associated with proliferation across many organisms and conditions. To better understand that association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the NAD+/NADH ratio. This change in NAD+/NADH is caused by increased mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration. Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD+ to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD+ regeneration by mitochondrial respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells engage in aerobic glycolysis when the demand for NAD+ is in excess of the demand for ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Glucólisis , NAD/metabolismo , Células A549 , Adenosina Trifosfato/genética , Aerobiosis , Glucosa/genética , Células HeLa , Humanos , NAD/genética , Oxidación-Reducción
3.
CA Cancer J Clin ; 71(4): 333-358, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33982817

RESUMEN

Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.


Asunto(s)
Metabolómica , Neoplasias/metabolismo , Investigación Biomédica , Humanos , Oncología Médica , Terapia Molecular Dirigida , Neoplasias/terapia
4.
Nature ; 609(7929): 1005-1011, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131016

RESUMEN

Lysosomes have many roles, including degrading macromolecules and signalling to the nucleus1. Lysosomal dysfunction occurs in various human conditions, such as common neurodegenerative diseases and monogenic lysosomal storage disorders (LSDs)2-4. For most LSDs, the causal genes have been identified but, in some, the function of the implicated gene is unknown, in part because lysosomes occupy a small fraction of the cellular volume so that changes in lysosomal contents are difficult to detect. Here we develop the LysoTag mouse for the tissue-specific isolation of intact lysosomes that are compatible with the multimodal profiling of their contents. We used the LysoTag mouse to study CLN3, a lysosomal transmembrane protein with an unknown function. In children, the loss of CLN3 causes juvenile neuronal ceroid lipofuscinosis (Batten disease), a lethal neurodegenerative LSD. Untargeted metabolite profiling of lysosomes from the brains of mice lacking CLN3 revealed a massive accumulation of glycerophosphodiesters (GPDs)-the end products of glycerophospholipid catabolism. GPDs also accumulate in the lysosomes of CLN3-deficient cultured cells and we show that CLN3 is required for their lysosomal egress. Loss of CLN3 also disrupts glycerophospholipid catabolism in the lysosome. Finally, we found elevated levels of glycerophosphoinositol in the cerebrospinal fluid of patients with Batten disease, suggesting the potential use of glycerophosphoinositol as a disease biomarker. Our results show that CLN3 is required for the lysosomal clearance of GPDs and reveal Batten disease as a neurodegenerative LSD with a defect in glycerophospholipid metabolism.


Asunto(s)
Ésteres , Glicerofosfolípidos , Fosfatos de Inositol , Lisosomas , Glicoproteínas de Membrana , Chaperonas Moleculares , Animales , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Niño , Ésteres/metabolismo , Glicerofosfolípidos/líquido cefalorraquídeo , Glicerofosfolípidos/metabolismo , Humanos , Fosfatos de Inositol/líquido cefalorraquídeo , Fosfatos de Inositol/metabolismo , Enfermedades por Almacenamiento Lisosomal/líquido cefalorraquídeo , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/líquido cefalorraquídeo , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo
5.
Nature ; 593(7858): 282-288, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828302

RESUMEN

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Nutrientes/metabolismo , Microambiente Tumoral , Animales , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Femenino , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/inmunología , Microambiente Tumoral/inmunología
6.
Nature ; 588(7839): 699-704, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33208952

RESUMEN

Dozens of genes contribute to the wide variation in human pigmentation. Many of these genes encode proteins that localize to the melanosome-the organelle, related to the lysosome, that synthesizes pigment-but have unclear functions1,2. Here we describe MelanoIP, a method for rapidly isolating melanosomes and profiling their labile metabolite contents. We use this method to study MFSD12, a transmembrane protein of unknown molecular function that, when suppressed, causes darker pigmentation in mice and humans3,4. We find that MFSD12 is required to maintain normal levels of cystine-the oxidized dimer of cysteine-in melanosomes, and to produce cysteinyldopas, the precursors of pheomelanin synthesis made in melanosomes via cysteine oxidation5,6. Tracing and biochemical analyses show that MFSD12 is necessary for the import of cysteine into melanosomes and, in non-pigmented cells, lysosomes. Indeed, loss of MFSD12 reduced the accumulation of cystine in lysosomes of fibroblasts from patients with cystinosis, a lysosomal-storage disease caused by inactivation of the lysosomal cystine exporter cystinosin7-9. Thus, MFSD12 is an essential component of the cysteine importer for melanosomes and lysosomes.


Asunto(s)
Cisteína/metabolismo , Lisosomas/metabolismo , Melanosomas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte Biológico , Fraccionamiento Celular , Línea Celular , Cistina/metabolismo , Cistinosis/genética , Cistinosis/metabolismo , Fibroblastos , Humanos , Melaninas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Oxidación-Reducción
7.
Immunity ; 44(6): 1243-5, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27332725

RESUMEN

Catabolic stress can lead to changes in circulating acetate levels. In this issue of Immunity, Balmer et al. (2016) report that serum acetate increases in response to acute infection and describe a mechanism by which this results in acetylation of the glycolytic enzyme GAPDH and improves the recall function of memory CD8(+) T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Acetatos , Humanos
8.
Blood ; 139(4): 538-553, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34624079

RESUMEN

Burkitt lymphoma (BL) is an aggressive lymphoma type that is currently treated by intensive chemoimmunotherapy. Despite the favorable clinical outcome for most patients with BL, chemotherapy-related toxicity and disease relapse remain major clinical challenges, emphasizing the need for innovative therapies. Using genome-scale CRISPR-Cas9 screens, we identified B-cell receptor (BCR) signaling, specific transcriptional regulators, and one-carbon metabolism as vulnerabilities in BL. We focused on serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in one-carbon metabolism. Inhibition of SHMT2 by either knockdown or pharmacological compounds induced anti-BL effects in vitro and in vivo. Mechanistically, SHMT2 inhibition led to a significant reduction of intracellular glycine and formate levels, which inhibited the mTOR pathway and thereby triggered autophagic degradation of the oncogenic transcription factor TCF3. Consequently, this led to a collapse of tonic BCR signaling, which is controlled by TCF3 and is essential for BL cell survival. In terms of clinical translation, we also identified drugs such as methotrexate that synergized with SHMT inhibitors. Overall, our study has uncovered the dependency landscape in BL, identified and validated SHMT2 as a drug target, and revealed a mechanistic link between SHMT2 and the transcriptional master regulator TCF3, opening up new perspectives for innovative therapies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/metabolismo , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/metabolismo , Animales , Linfoma de Burkitt/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Formiatos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glicina/metabolismo , Glicina Hidroximetiltransferasa/genética , Humanos , Ratones , Terapia Molecular Dirigida , Proteolisis/efectos de los fármacos
9.
Nature ; 559(7715): 632-636, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995852

RESUMEN

The chemotherapeutic drug methotrexate inhibits the enzyme dihydrofolate reductase1, which generates tetrahydrofolate, an essential cofactor in nucleotide synthesis2. Depletion of tetrahydrofolate causes cell death by suppressing DNA and RNA production3. Although methotrexate is widely used as an anticancer agent and is the subject of over a thousand ongoing clinical trials4, its high toxicity often leads to the premature termination of its use, which reduces its potential efficacy5. To identify genes that modulate the response of cancer cells to methotrexate, we performed a CRISPR-Cas9-based screen6,7. This screen yielded FTCD, which encodes an enzyme-formimidoyltransferase cyclodeaminase-that is required for the catabolism of the amino acid histidine8, a process that has not previously been linked to methotrexate sensitivity. In cultured cancer cells, depletion of several genes in the histidine degradation pathway markedly decreased sensitivity to methotrexate. Mechanistically, histidine catabolism drains the cellular pool of tetrahydrofolate, which is particularly detrimental to methotrexate-treated cells. Moreover, expression of the rate-limiting enzyme in histidine catabolism is associated with methotrexate sensitivity in cancer cell lines and with survival rate in patients. In vivo dietary supplementation of histidine increased flux through the histidine degradation pathway and enhanced the sensitivity of leukaemia xenografts to methotrexate. The histidine degradation pathway markedly influences the sensitivity of cancer cells to methotrexate and may be exploited to improve methotrexate efficacy through a simple dietary intervention.


Asunto(s)
Histidina/metabolismo , Metotrexato/farmacología , Metotrexato/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Amoníaco-Liasas/deficiencia , Amoníaco-Liasas/genética , Amoníaco-Liasas/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Femenino , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/uso terapéutico , Glutamato Formimidoiltransferasa/deficiencia , Glutamato Formimidoiltransferasa/genética , Glutamato Formimidoiltransferasa/metabolismo , Histidina/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Enzimas Multifuncionales , Nucleótidos/biosíntesis , Proteína Portadora de Folato Reducido/genética , Proteína Portadora de Folato Reducido/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolatos/deficiencia , Tetrahidrofolatos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653947

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify nongenetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Estabilidad de Enzimas , Glutamato-Amoníaco Ligasa/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética
12.
Mol Cell ; 55(2): 253-63, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24882210

RESUMEN

Eukaryotic cells compartmentalize biochemical processes in different organelles, often relying on metabolic cycles to shuttle reducing equivalents across intracellular membranes. NADPH serves as the electron carrier for the maintenance of redox homeostasis and reductive biosynthesis, with separate cytosolic and mitochondrial pools providing reducing power in each respective location. This cellular organization is critical for numerous functions but complicates analysis of metabolic pathways using available methods. Here we develop an approach to resolve NADP(H)-dependent pathways present within both the cytosol and the mitochondria. By tracing hydrogen in compartmentalized reactions that use NADPH as a cofactor, including the production of 2-hydroxyglutarate by mutant isocitrate dehydrogenase enzymes, we can observe metabolic pathway activity in these distinct cellular compartments. Using this system we determine the direction of serine/glycine interconversion within the mitochondria and cytosol, highlighting the ability of this approach to resolve compartmentalized reactions in intact cells.


Asunto(s)
Citosol/metabolismo , Mitocondrias/metabolismo , NADP/metabolismo , Línea Celular Tumoral , Glucosa/metabolismo , Glicina/metabolismo , Humanos , Isocitrato Deshidrogenasa/metabolismo , Análisis de Flujos Metabólicos , Serina/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(1): 303-312, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30541894

RESUMEN

Mitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially localized 3XHA epitope tag (MITO-Tag) for the fast isolation of mitochondria from cultured cells to generate MITO-Tag Mice. Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology, and our strategy should be generally applicable for studying other mammalian organelles in specific cell types in vivo.


Asunto(s)
Epítopos/inmunología , Mitocondrias/inmunología , Animales , Hepatocitos/metabolismo , Immunoblotting , Lípidos/fisiología , Masculino , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/química , Mitocondrias/metabolismo , Mitocondrias/fisiología , Mitocondrias Hepáticas/química , Mitocondrias Hepáticas/inmunología , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/fisiología , Proteómica/métodos
14.
Blood ; 131(26): 2955-2966, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29712634

RESUMEN

Red cells contain a unique constellation of membrane lipids. Although much is known about regulated protein expression, the regulation of lipid metabolism during erythropoiesis is poorly studied. Here, we show that transcription of PHOSPHO1, a phosphoethanolamine and phosphocholine phosphatase that mediates the hydrolysis of phosphocholine to choline, is strongly upregulated during the terminal stages of erythropoiesis of both human and mouse erythropoiesis, concomitant with increased catabolism of phosphatidylcholine (PC) and phosphocholine as shown by global lipidomic analyses of mouse and human terminal erythropoiesis. Depletion of PHOSPHO1 impaired differentiation of fetal mouse and human erythroblasts, and, in adult mice, depletion impaired phenylhydrazine-induced stress erythropoiesis. Loss of PHOSPHO1 also impaired phosphocholine catabolism in mouse fetal liver progenitors and resulted in accumulation of several lipids; adenosine triphosphate (ATP) production was reduced as a result of decreased oxidative phosphorylation. Glycolysis replaced oxidative phosphorylation in PHOSPHO1-knockout erythroblasts and the increased glycolysis was used for the production of serine or glycine. Our study elucidates the dynamic changes in lipid metabolism during terminal erythropoiesis and reveals the key roles of PC and phosphocholine metabolism in energy balance and amino acid supply.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Fosforilcolina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Eritroblastos/citología , Eliminación de Gen , Glucólisis , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación Oxidativa , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
15.
Nat Chem Biol ; 12(6): 452-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27110680

RESUMEN

Serine is both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical pathway of glucose-derived serine synthesis, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, rate-limiting step. Genetic loss of PHGDH is toxic toward PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we used a quantitative high-throughput screen to identify small-molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and we suggest that one-carbon unit wasting thus may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.


Asunto(s)
Carbono/metabolismo , Inhibidores Enzimáticos/farmacología , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Serina/biosíntesis , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Carbono/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Femenino , Glucólisis/efectos de los fármacos , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Estructura Molecular , Fosfoglicerato-Deshidrogenasa/metabolismo , Purinas/biosíntesis , Serina/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Timidina/biosíntesis , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Elife ; 132024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787918

RESUMEN

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.


Cancer cells convert nutrients into energy differently compared to healthy cells. This difference in metabolism allows them to grow and divide more quickly and sometimes to migrate to different areas of the body. The environment around cancer cells ­ known as the tumor microenvironment ­ contains a variety of different cells and blood vessels, which are bathed in interstitial fluid. This microenvironment provides nutrients for the cancer cells to metabolize, and therefore influences how well a tumor grows and how it might respond to treatment. Recent advances with techniques such as mass spectrometry, which can measure the chemical composition of a substance, have allowed scientists to measure nutrient levels in the tumor microenvironments of mice. However, it has been more difficult to conduct such studies in humans, as well as to compare the tumor microenvironment to the healthy tissue the tumors arose from. Abbott, Ali, Reinfeld et al. aimed to fill this gap in knowledge by using mass spectrometry to measure the nutrient levels in the tumor microenvironment of 55 patients undergoing surgery to remove kidney tumors. Comparing the type and levels of nutrients in the tumor interstitial fluid, the neighboring healthy kidney and the blood showed that nutrients in the tumor and healthy kidney were more similar to each other than those in the blood. For example, both the tumor and healthy kidney interstitial fluids contained less glucose than the blood. However, the difference between nutrient composition in the tumor and healthy kidney interstitial fluids was insignificant, suggesting that the healthy kidney and its tumor share a similar environment. Taken together, the findings indicate that kidney cancer cells must adapt to the nutrients available in the kidney, rather than changing what nutrients are available in the tissue. Future studies will be required to investigate whether this finding also applies to other types of cancer. A better understanding of how cancer cells adapt to their environments may aid the development of drugs that aim to disrupt the metabolism of tumors.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Metaboloma , Nutrientes , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/metabolismo , Nutrientes/metabolismo , Metabolómica/métodos , Microambiente Tumoral , Líquido Extracelular/metabolismo , Femenino , Masculino , Lipidómica
17.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38187626

RESUMEN

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.

19.
Phys Med Rehabil Clin N Am ; 34(3): 513-522, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37419528

RESUMEN

Patients who are hospitalized due to COVID-19 are predisposed to requiring acute inpatient rehabilitation. Multiple factors have posed challenges to inpatient rehabilitation during the COVID-19 pandemic, such as staff shortages, restrictions with therapy, and barriers to discharge. Despite these challenges, data have shown that inpatient rehabilitation plays a key role in functional gains for this patient population. There remains a need for more data on the current challenges that are faced in the inpatient rehabilitation setting, as well as better understanding of long-term functional outcomes following COVID-19.


Asunto(s)
COVID-19 , Humanos , Pacientes Internos , Pandemias
20.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36219197

RESUMEN

Variants in the triggering receptor expressed on myeloid cells 2 (TREM2) gene are associated with increased risk for late-onset AD. Genetic loss of or decreased TREM2 function impairs the microglial response to amyloid-ß (Aß) plaques, resulting in more diffuse Aß plaques and increased peri-plaque neuritic dystrophy and AD-tau seeding. Thus, microglia and TREM2 are at a critical intersection of Aß and tau pathologies in AD. Since genetically decreasing TREM2 function increases Aß-induced tau seeding, we hypothesized that chronically increasing TREM2 signaling would decrease amyloid-induced tau-seeding and spreading. Using a mouse model of amyloidosis in which AD-tau is injected into the brain to induce Aß-dependent tau seeding/spreading, we found that chronic administration of an activating TREM2 antibody increases peri-plaque microglial activation but surprisingly increases peri-plaque NP-tau pathology and neuritic dystrophy, without altering Aß plaque burden. Our data suggest that sustained microglial activation through TREM2 that does not result in strong amyloid removal may exacerbate Aß-induced tau pathology, which may have important clinical implications.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides , Amiloidosis/patología , Animales , Modelos Animales de Enfermedad , Microglía/patología , Placa Amiloide/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA