Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802043

RESUMEN

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Estudio de Asociación del Genoma Completo , Medicina de Precisión , Secuenciación Completa del Genoma/métodos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
2.
3.
N Engl J Med ; 386(16): 1495-1504, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35443107

RESUMEN

BACKGROUND: The long-term efficacy and safety of time-restricted eating for weight loss are not clear. METHODS: We randomly assigned 139 patients with obesity to time-restricted eating (eating only between 8:00 a.m. and 4:00 p.m.) with calorie restriction or daily calorie restriction alone. For 12 months, all the participants were instructed to follow a calorie-restricted diet that consisted of 1500 to 1800 kcal per day for men and 1200 to 1500 kcal per day for women. The primary outcome was the difference between the two groups in the change from baseline in body weight; secondary outcomes included changes in waist circumference, body-mass index (BMI), amount of body fat, and measures of metabolic risk factors. RESULTS: Of the total 139 participants who underwent randomization, 118 (84.9%) completed the 12-month follow-up visit. The mean weight loss from baseline at 12 months was -8.0 kg (95% confidence interval [CI], -9.6 to -6.4) in the time-restriction group and -6.3 kg (95% CI, -7.8 to -4.7) in the daily-calorie-restriction group. Changes in weight were not significantly different in the two groups at the 12-month assessment (net difference, -1.8 kg; 95% CI, -4.0 to 0.4; P = 0.11). Results of analyses of waist circumferences, BMI, body fat, body lean mass, blood pressure, and metabolic risk factors were consistent with the results of the primary outcome. In addition, there were no substantial differences between the groups in the numbers of adverse events. CONCLUSIONS: Among patients with obesity, a regimen of time-restricted eating was not more beneficial with regard to reduction in body weight, body fat, or metabolic risk factors than daily calorie restriction. (Funded by the National Key Research and Development Project [No. 2018YFA0800404] and others; ClinicalTrials.gov number, NCT03745612.).


Asunto(s)
Restricción Calórica , Ayuno , Obesidad , Pérdida de Peso , Composición Corporal , Índice de Masa Corporal , Restricción Calórica/métodos , Femenino , Humanos , Masculino , Obesidad/dietoterapia , Factores de Tiempo
4.
Circ Res ; 132(12): 1628-1647, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289909

RESUMEN

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality globally. Although CVD events do not typically manifest until older adulthood, CVD develops gradually across the life-course, beginning with the elevation of risk factors observed as early as childhood or adolescence and the emergence of subclinical disease that can occur in young adulthood or midlife. Genomic background, which is determined at zygote formation, is among the earliest risk factors for CVD. With major advances in molecular technology, including the emergence of gene-editing techniques, along with deep whole-genome sequencing and high-throughput array-based genotyping, scientists now have the opportunity to not only discover genomic mechanisms underlying CVD but use this knowledge for the life-course prevention and treatment of these conditions. The current review focuses on innovations in the field of genomics and their applications to monogenic and polygenic CVD prevention and treatment. With respect to monogenic CVD, we discuss how the emergence of whole-genome sequencing technology has accelerated the discovery of disease-causing variants, allowing comprehensive screening and early, aggressive CVD mitigation strategies in patients and their families. We further describe advances in gene editing technology, which might soon make possible cures for CVD conditions once thought untreatable. In relation to polygenic CVD, we focus on recent innovations that leverage findings of genome-wide association studies to identify druggable gene targets and develop predictive genomic models of disease, which are already facilitating breakthroughs in the life-course treatment and prevention of CVD. Gaps in current research and future directions of genomics studies are also discussed. In aggregate, we hope to underline the value of leveraging genomics and broader multiomics information for characterizing CVD conditions, work which promises to expand precision approaches for the life-course prevention and treatment of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Anciano , Adulto Joven , Adulto , Niño , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/prevención & control , Estudio de Asociación del Genoma Completo , Genómica , Factores de Riesgo
5.
Planta ; 259(2): 46, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285079

RESUMEN

MAIN CONCLUSION: Foliar NAA increases photosynthate supplied by enhancing photosynthesis, to strengthen root activity and provide a large sink for root carbohydrate accumulation, which is beneficial to acquire more nitrogen. The improvement of grain yield is an effective component in the food security. Auxin acts as a well-known plant hormone, plays an important role in maize growth and nutrient uptake. In this study, with maize variety Zhengdan 958 (ZD958) as material, the effects of auxin on nitrogen (N) uptake and assimilation of seedling maize were studied by hydroponic experiments. With water as the control, naphthalene acetic acid (NAA, 0.1 mmol/L) and aminoethoxyvinylglycine (AVG, 0.1 mmol/L, an auxin synthesis inhibitor) were used for foliar spraying. The results showed that NAA significantly improved photosynthetic rate and plant biomass by 58.6% and 91.7%, respectively, while the effect of AVG was opposite to that of NAA. At the same time, key enzymes activities related N assimilation in NAA leaves were significantly increased, and the activities of nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT) were increased by 32.3%, 22.9%, and 16.2% in new leaves. Furthermore, NAA treatment promoted underground growth. When compared with control, total root length, root surface area, root tip number, branch number and root activity were significantly increased by 37.8%, 22.2%, 35.1%, 28.8% and 21.2%. Root growth is beneficial to N capture in maize. Ultimately, the total N accumulation of NAA treatment was significantly increased by 74.5%, as compared to the control. In conclusion, NAA foliar spraying increased endogenous IAA content, and enhanced the activity of N assimilation-related enzymes and photosynthesis rate, in order to build a large sink for carbohydrate accumulation. In addition, NAA strengthened root activity and regulated root morphology and architecture, which facilitated further N uptake and plant growth.


Asunto(s)
Ácidos Indolacéticos , Zea mays , Transporte Biológico , Carbohidratos , Nitrógeno
6.
PLoS Genet ; 17(3): e1009431, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760818

RESUMEN

Fish oil supplementation is widely used for reducing serum triglycerides (TAGs) but has mixed effects on other circulating cardiovascular biomarkers. Many genetic polymorphisms have been associated with blood lipids, including high- and low-density-lipoprotein cholesterol (HDL-C, LDL-C), total cholesterol, and TAGs. Here, the gene-diet interaction effects of fish oil supplementation on these lipids were analyzed in a discovery cohort of up to 73,962 UK Biobank participants, using a 1-degree-of-freedom (1df) test for interaction effects and a 2-degrees-of-freedom (2df) test to jointly analyze interaction and main effects. Associations with P < 1×10-6 in either test (26,157; 18,300 unique variants) were advanced to replication in up to 7,284 participants from the Atherosclerosis Risk in Communities (ARIC) Study. Replicated associations reaching 1df P < 0.05 (2,175; 1,763 unique variants) were used in meta-analyses. We found 13 replicated and 159 non-replicated (UK Biobank only) loci with significant 2df joint tests that were predominantly driven by main effects and have been previously reported. Four novel interaction loci were identified with 1df P < 5×10-8 in meta-analysis. The lead variant in the GJB6-GJB2-GJA3 gene cluster, rs112803755 (A>G; minor allele frequency = 0.041), shows exclusively interaction effects. The minor allele is significantly associated with decreased TAGs in individuals with fish oil supplementation, but with increased TAGs in those without supplementation. This locus is significantly associated with higher GJB2 expression of connexin 26 in adipose tissue; connexin activity is known to change upon exposure to omega-3 fatty acids. Significant interaction effects were also found in three other loci in the genes SLC12A3 (HDL-C), ABCA6 (LDL-C), and MLXIPL (LDL-C), but highly significant main effects are also present. Our study identifies novel gene-diet interaction effects for four genetic loci, whose effects on blood lipids are modified by fish oil supplementation. These findings highlight the need and possibility for personalized nutrition.


Asunto(s)
Suplementos Dietéticos , Aceites de Pescado/farmacología , Estudio de Asociación del Genoma Completo , Metabolismo de los Lípidos/efectos de los fármacos , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Alelos , Mapeo Cromosómico , Humanos , Lípidos/sangre , Polimorfismo de Nucleótido Simple , Reino Unido
7.
Chem Biodivers ; 20(9): e202300991, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37580280

RESUMEN

A new polyaromatic metabolite, ent-herqueidiketal (1), and a new phenalenone derivative, epi-peniciherqueinone (2), along with twelve known compounds 3-14, were isolated from the fungus Penicillium herquei YNJ-35, a symbiotic fungus of Pulveroboletus brunneopunctatus collected from Nangunhe Nature Reserve, Yunnan Province, China. The structures of 1-14 and the absolute configurations of 1 and 2 were determined by their spectroscopic data or by their single-crystal X-ray diffraction analysis or optical rotation values. Compound 1 showed strong antibacterial activity against Staphylococcus aureus (ATCC 29213) with minimum inhibitory concentration (MIC) of 8 µg/mL. In the cytotoxicity assays, compound 1 showed weak inhibitory activity against breast cancer MCF-7 and mice microglial BV2 cells with half maximal inhibitory concentration (IC50 ) of 17.58 and 29.56 µM; compound 14 showed stronger cytotoxicity against BV2 and MCF-7 cells with IC50 values of 6.57 and 10.26 µM.


Asunto(s)
Agaricales , Penicillium , Animales , Ratones , Estructura Molecular , China , Penicillium/química
8.
Molecules ; 28(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630369

RESUMEN

This work explores a simple way to regulate the morphology and structure of biomass-based carbon and effectively utilize its internal functional groups as the substrate for the next energy materials. The unique randomly oriented and highly interconnected cordyceps-like 3D structure of rice husk is formed by direct high-temperature carbonization, and the main component is SiC. The well-arranged cordyceps-like structure of SiC demonstrates a remarkable structural/chemical stability and a high rate of electron migration, and further could be used as a stable substrate for metal deposition and find application in the field of electrocatalysis. The oxygen evolution reaction catalyst (SiC-C@Fe3O4) prepared by chemical deposition exhibits a low overpotential (260 mV), low Tafel slope (56.93 mV dec-1), high electrochemical active surface area (54.92 mF cm-2), and low Rct value (0.15 Ω) at a current density of 10 mA cm-2 in 1 M KOH electrolyte. The produced natural Si-C composite materials overcome the limitations imposed by the intricate internal structure of silicon-rich biomass. The existence of this stable substrate offers a novel avenue for maximizing the utilization of rice-husk-based carbon, and broadens its application field. At the same time, it also provides a theoretical basis for the use of rice husks in the field of hydrogen production by electrolysis of water, thus promoting their high-value utilization.

9.
Mol Psychiatry ; 26(6): 2111-2125, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32372009

RESUMEN

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Presión Sanguínea/genética , Epistasis Genética , Sitios Genéticos , Humanos , Hipertensión/genética , Polimorfismo de Nucleótido Simple
10.
Epidemiol Infect ; 150: e171, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36263615

RESUMEN

Coronavirus disease 2019 (COVID-19) asymptomatic cases are hard to identify, impeding transmissibility estimation. The value of COVID-19 transmissibility is worth further elucidation for key assumptions in further modelling studies. Through a population-based surveillance network, we collected data on 1342 confirmed cases with a 90-days follow-up for all asymptomatic cases. An age-stratified compartmental model containing contact information was built to estimate the transmissibility of symptomatic and asymptomatic COVID-19 cases. The difference in transmissibility of a symptomatic and asymptomatic case depended on age and was most distinct for the middle-age groups. The asymptomatic cases had a 66.7% lower transmissibility rate than symptomatic cases, and 74.1% (95% CI 65.9-80.7) of all asymptomatic cases were missed in detection. The average proportion of asymptomatic cases was 28.2% (95% CI 23.0-34.6). Simulation demonstrated that the burden of asymptomatic transmission increased as the epidemic continued and could potentially dominate total transmission. The transmissibility of asymptomatic COVID-19 cases is high and asymptomatic COVID-19 cases play a significant role in outbreaks.


Asunto(s)
COVID-19 , Epidemias , Humanos , Persona de Mediana Edad , Simulación por Computador , COVID-19/epidemiología , COVID-19/transmisión , Brotes de Enfermedades , SARS-CoV-2 , Infecciones Asintomáticas
11.
Exp Cell Res ; 398(1): 112359, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221315

RESUMEN

Intervertebral disc degeneration (IDD) is the root cause of many musculoskeletal disorders of the spine. However, the etiology of IDD is complex and still not well understood. Animal models of IDD would be useful in deciphering the underlying mechanisms. But the existing animal models have their limitations. Therefore, to establish a novel mouse model that can simulate the human IDD process in vivo, we proposed to carefully circumcise the 2 mm-wide tail skin and then compressively sutured the defect with a simple end-to-end suture to exert excessive pressure on the disc. After 1-week, 2-week, and 4-week compression, the mice were sacrificed and the intervertebral discs were harvested for tissue analysis. The radiological, morphological, and molecular modifications of intervertebral discs were measured to characterize this model. Radiologically, the water content of the intervertebral disc decreased significantly after 2-week compression. Morphologically, the nucleus pulposus showed a decrease in volume and the number of notochordal cells. The compressive suture also broke the balance between anabolic and catabolic enzymes in nucleus pulposus, which led to the remodeling of the extracellular matrix in nucleus pulposus as the content of aggrecan and collagen II decreased. The compressive suture could induce intervertebral discs degeneration in a more reasonable way, which was solely influenced by mechanical loading, as the mice caudal vertebrae still moved freely after the operation. This kind of animal model could be adapted as a reliable in vivo mouse IDD model for the research regarding the etiology and treatments of IDD.


Asunto(s)
Disco Intervertebral/metabolismo , Animales , Modelos Animales de Enfermedad , Disco Intervertebral/cirugía , Masculino , Ratones , Ratones Endogámicos C57BL , Suturas/efectos adversos
12.
Nutr Metab Cardiovasc Dis ; 32(7): 1681-1692, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35599090

RESUMEN

BACKGROUND AND AIMS: Identify novel metabolite associations with blood pressure (BP) salt-sensitivity and hypertension. METHODS AND RESULTS: The Genetic Epidemiology Network of Salt Sensitivity (GenSalt) Replication study includes 698 Chinese participants who underwent a 3-day baseline examination followed by a 7-day low-sodium feeding and 7-day high-sodium feeding. Latent mixture models identified three trajectories of blood pressure (BP) responses to the sodium interventions. We selected 50 most highly salt-sensitive and 50 most salt-resistant participants for untargeted metabolomics profiling. Multivariable adjusted mixed logistic regression models tested the associations of baseline metabolites with BP salt-sensitivity. Multivariable adjusted mixed linear regression models tested the associations of BP salt-sensitivity with metabolite changes during the sodium interventions. Identified metabolites were tested for associations with hypertension among 1249 Bogalusa Heart Study (BHS) participants using multiple logistic regression. Fifteen salt-sensitivity metabolites were associated with hypertension in the BHS. Baseline values of serine, 2-methylbutyrylcarnitine and isoleucine directly associated with high salt-sensitivity. Among them, serine indirectly associated with hypertension while 2-methylbutyrylcarnitine and isoleucine directly associated with hypertension. Baseline salt-sensitivity status predicted changes in 14 metabolites when switching to low-sodium or high-sodium interventions. Among them, glutamate, 1-carboxyethylvaline, 2-methylbutyrylcarnitine, 3-methoxytyramine sulfate, glucose, alpha-ketoglutarate, hexanoylcarnitine, gamma-glutamylisoleucine, gamma-glutamylleucine, and gamma-glutamylphenylalanine directly associated with hypertension. Conversely, serine, histidine, threonate and 5-methyluridine indirectly associated with hypertension. Together, these metabolites explained an additional 7% of hypertension susceptibility when added to a model including traditional risk factors. CONCLUSIONS: Our findings contribute to the molecular characterization of BP response to sodium and provide novel biological insights into salt-sensitive hypertension.


Asunto(s)
Hipertensión , Isoleucina , Presión Sanguínea/genética , Humanos , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/genética , Metabolómica , Serina , Sodio , Cloruro de Sodio Dietético/efectos adversos
13.
Chem Biodivers ; 19(6): e202200286, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35502602

RESUMEN

Longibrachiamide A (1), a new 20-residue peptaibol, along with three known ones (2-4), were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, isolated from a mushroom Clitocybe nebularis (Batsch) P. Kumm, which was collected from coniferous forest of northeast China in our previous work. The structure of longibrachiamide A (1) was determined by its NMR and ESI-MS/MS data, the absolute configuration of 1 was further determined by Marfey's analyses. And the complete NMR data of 2-4 were also reported for the first time. The similar CD spectra of 1-4 showed that they all had mixed 310 -/α-helical conformations. Compounds 1-4 showed strong cytotoxicities against BV2, A549 and MCF-7 cells, and also showed moderate inhibitory effects against the tested Gram-positive bacteria, including MRSA T144 and VRE-10.


Asunto(s)
Hypocreales , Trichoderma , Peptaiboles/química , Peptaiboles/farmacología , Espectrometría de Masas en Tándem , Trichoderma/química
14.
Chem Biodivers ; 19(9): e202200627, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921066

RESUMEN

Total 23 eleven-residue peptaibols, including five reported ones (1-5) in our previous work, were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, which was obtained from the mushroom Clitocybe nebularis (Batsch) P. Kumm. The structures of the 13 new peptaibols (6-10 and 12-19) were determined by their NMR and MALDI-MS/MS data, their absolute structures were further determined by Marfey's analyses and their ECD data. Careful comparison of the structures of 1-23 showed that only seven residues varied including the 2nd (Gln2 /Asn2 ), 3rd (Ile3 /Val3 ), 4th (Ile4 /Val4 ), 6th (Pro6 /Hyp6 ), 8th (Leu8 /Val8 ), 10th (Pro10 /Hyp10 ) and 11th (Leuol11 /Ileol11 /Valol11 ) residues. Comparison of the IC50 s against the three tested cell lines of 1-23 indicated that 2nd, 3rd and 4th amino acid residues affected their cytotoxicities powerfully. Compounds 2, 5, 9, 11, 21 and 22 showed moderate antibacterial activities against Staphylococcus aureus MRSA T144, which also showed stronger cytotoxicities against BV2 and MCF-7 cells.


Asunto(s)
Peptaiboles , Trichoderma , Aminoácidos/metabolismo , Antibacterianos/química , Hypocreales , Peptaiboles/química , Peptaiboles/farmacología , Relación Estructura-Actividad , Espectrometría de Masas en Tándem , Trichoderma/química
15.
Clin Infect Dis ; 73(3): 542-544, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32857838

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic may impede global tuberculosis elimination goals. In Jiangsu Province, China, tuberculosis notifications dropped 52% in 2020 compared to 2015-2019. Treatment completion and screening for drug resistance decreased continuously in 2020. Urgent attention must be paid to tuberculosis control efforts during and after the COVID-19 pandemic.


Asunto(s)
COVID-19 , Tuberculosis , China/epidemiología , Humanos , Pandemias , SARS-CoV-2 , Tuberculosis/epidemiología
16.
Hum Mol Genet ; 28(15): 2615-2633, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127295

RESUMEN

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.


Asunto(s)
Presión Arterial/genética , Interacción Gen-Ambiente , Hipertensión/genética , Polimorfismo Genético , Grupos Raciales/genética , Fumar/efectos adversos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antiportadores/genética , Presión Sanguínea/genética , Caspasa 9/genética , Etnicidad/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/etiología , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Receptores de Vasopresinas/genética , Transportadores de Sulfato/genética , Proteínas Supresoras de Tumor/genética , Adulto Joven
17.
Am J Hum Genet ; 102(3): 375-400, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29455858

RESUMEN

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10-8) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10-8). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).


Asunto(s)
Presión Sanguínea/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Grupos Raciales/genética , Fumar/genética , Estudios de Cohortes , Diástole/genética , Epistasis Genética , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados , Sístole/genética
18.
Biochem Biophys Res Commun ; 555: 46-53, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33813275

RESUMEN

The onset and progression of intervertebral disc degeneration (IVDD) is strictly associated with oxidative stress. TRIM21 (Tripartite motif-containing protein 21), a ubiquitin E3 ligase, has been shown to play an essential role in liver redox homeostasis; however, whether TRIM21 is involved in IVDD, especially in oxidative stress-induced IVDD, is unknown. Here, we reported that TRIM21 was upregulated in nucleus pulposus (NPs) with increasing severity of IVDD, and that oxidative stress was a stimulator of TRIM21 expression. Furthermore, we found that TRIM21 deficiency significantly protected NP cells from degeneration induced by oxidative stress as well as ameliorated disc degeneration in aged mice. Mechanistically, TRIM21 facilitated NP cells degeneration induced by oxidative stress via HIF-1α. TRIM21 could physically interact with HIF-1α and facilitated its degradation via its ubiquitylating activity. Taken together, these findings revealed that TRIM21 drived IVDD induced by oxidative stress by increasing HIF-1α degradation. These findings implicates the potential of TRIM21 as a therapeutic target in IVDD, especially in oxidative stress-induced IVDD.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Ribonucleoproteínas/metabolismo , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Femenino , Humanos , Peróxido de Hidrógeno/farmacología , Degeneración del Disco Intervertebral/patología , Masculino , Persona de Mediana Edad , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Ribonucleoproteínas/genética , Adulto Joven
19.
Small ; 17(31): e2100794, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34165871

RESUMEN

Phototherapy in the second near-IR (1000-1700 nm, NIR-II) window has achieved much progress because of its high efficiency and relatively minor side effects. In this paper, a new NIR-II responsive hollow magnetite nanocluster (HMNC) for targeted and imaging-guided cancer therapy is reported. The HMNC not only provides a hollow cavity for drug loading but also serves as a contrast agent for tumor-targeted magnetic resonance imaging. The acid-induced dissolution of the HMNCs can trigger a pH-responsive drug release for chemotherapy and catalyze the hydroxyl radical (·OH) formation from the decomposition of hydrogen peroxide for chemodynamic therapy. Moreover, the HMNCs can adsorb and convert NIR-II light into local heat (photothermal conversion efficacy: 36.3%), which can accelerate drug release and enhance the synergistic effect of chemo-photothermal therapy. The HMNCs show great potential as a versatile nanoplatform for targeted imaging-guided trimodal cancer therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Doxorrubicina , Liberación de Fármacos , Óxido Ferrosoférrico , Imagen por Resonancia Magnética , Fototerapia
20.
Immunity ; 37(1): 74-84, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22727489

RESUMEN

Epithelial keratinocyte proliferation is an essential element of wound repair, and abnormal epithelial proliferation is an intrinsic element in the skin disorder psoriasis. The factors that trigger epithelial proliferation in these inflammatory processes are incompletely understood. Here we have shown that regenerating islet-derived protein 3-alpha (REG3A) is highly expressed in keratinocytes during psoriasis and wound repair and in imiquimod-induced psoriatic skin lesions. The expression of REG3A by keratinocytes is induced by interleukin-17 (IL-17) via activation of keratinocyte-encoded IL-17 receptor A (IL-17RA) and feeds back on keratinocytes to inhibit terminal differentiation and increase cell proliferation by binding to exostosin-like 3 (EXTL3) followed by activation of phosphatidylinositol 3 kinase (PI3K) and the kinase AKT. These findings reveal that REG3A, a secreted intestinal antimicrobial protein, can promote skin keratinocyte proliferation and can be induced by IL-17. This observation suggests that REG3A may mediate the epidermal hyperproliferation observed in normal wound repair and in psoriasis.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Queratinocitos/citología , Queratinocitos/metabolismo , Lectinas Tipo C/metabolismo , Piel/lesiones , Piel/metabolismo , Animales , Antígenos de Neoplasias/genética , Biomarcadores de Tumor/genética , Diferenciación Celular/genética , Proliferación Celular , Epidermis/efectos de los fármacos , Epidermis/lesiones , Epidermis/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-17/farmacología , Queratinocitos/efectos de los fármacos , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Asociadas a Pancreatitis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Psoriasis/inmunología , Psoriasis/metabolismo , Psoriasis/patología , Transducción de Señal , Piel/efectos de los fármacos , Cicatrización de Heridas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA