Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 46(12): 3760-3774, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37642386

RESUMEN

Wheat (Triticum aestivum L.) is an important food crop mainly grown in arid and semiarid regions worldwide, whose productivity is severely limited by drought stress. Although various E3 ubiquitin (Ub) ligases regulate drought stress, only a few SINA-type E3 Ub ligases are known to participate in such responses. Herein, we identified and cloned 15 TaSINAs from wheat. The transcription level of TaSINA2B was highly induced by drought, osmotic and abscisic acid treatments. Two-type promoters of TaSINA2B were found in 192 wheat accessions; furthermore wheat accessions with promoter TaSINA2BII showed a considerably higher level of drought tolerance and gene expression levels than those characterizing accessions with promoter TaSINA2BI that was mainly caused by a 64 bp insertion in its promoter. Enhanced drought tolerance of TaSINA2B-overexpressing (OE) transgenic wheat lines was found to be associated with root growth promotion. Further, an interaction between TaSINA2B and TaSINA1D was detected through yeast two-hybrid and bimolecular fluorescence complementation assays. And TaSINA1D-OE transgenic wheat lines showed similar drought tolerance and root growth phenotype to those observed when TaSINA2B was overexpressed. Therefore, the variation of TaSINA2B promoter contributed to the drought stress regulation, while TaSINA2B, interacting with TaSINA1D, positively regulated drought tolerance by promoting root growth.


Asunto(s)
Resistencia a la Sequía , Triticum , Triticum/fisiología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Sequías , Ligasas/genética , Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Cell Rep ; 42(8): 1379-1390, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37227494

RESUMEN

KEY MESSAGE: This study provides important information on the genetic basis of GCaC in wheat, thus contributing to breeding efforts to improve the nutrient quality of wheat. Calcium (Ca) plays important roles in the human body. Wheat grain provides the main diet for billions of people worldwide but is low in Ca content. Here, grain Ca content (GCaC) of 471 wheat accessions was determined in four field environments. A genome-wide association study (GWAS) was performed to reveal the genetic basis of GCaC using the phenotypic data form four environments and a wheat 660 K single nucleotide polymorphism (SNP) array. Twelve quantitative trait locus (QTLs) for GCaC were identified on chromosomes 1A, 1D, 2A, 3B, 6A, 6D, 7A, and 7D, which was significant in at least two environments. Haplotype analysis revealed that the phenotypic difference between the haplotypes of TraesCS6D01G399100 was significant (P ≤ 0.05) across four environments, suggesting it as an important candidate gene for GCaC. This research enhances our understanding of the genetic architecture of GCaC for further improving the nutrient quality of wheat.


Asunto(s)
Calcio , Estudio de Asociación del Genoma Completo , Humanos , Mapeo Cromosómico , Triticum/genética , Pan , Fitomejoramiento , Grano Comestible/genética , Variación Genética , Polimorfismo de Nucleótido Simple/genética , Fenotipo
3.
Angew Chem Int Ed Engl ; 62(17): e202217378, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36692831

RESUMEN

Graphdiynes (GDYs), two-dimensional graphene-like carbon systems, are considered as potential advanced membrane material due to their unique physicochemical features. Nevertheless, the scale-up of integrated GDY membranes is technologically challenging, and most studies remain at the theoretical stage. Herein, we report a simple and efficient alkynylated surface-mediated strategy to prepare hydrogen-substituted graphdiyne (HsGDY) membranes on commercial alumina tubes. Surface alkynylation initiates an accelerated surface-confined coupling reaction in the presence of a copper catalyst and facilitates the nanoscale epitaxial lateral growth of HsGDY. A continuous and ultra-thin HsGDY membrane (∼100 nm) can be produced within 15 min. The resulting membranes exhibit outstanding molecular sieving together with excellent water permeances (ca. 1100 L m-2 h-1 MPa-1 ), and show a long-term durability in cross-flow nanofiltration, owing to the superhydrophilic surface and hydrophobic pore walls.

4.
J Transl Med ; 20(1): 557, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463222

RESUMEN

BACKGROUND: Lymph node metastasis (LNM) is one of the most important factors affecting the prognosis of breast cancer. The accurate evaluation of lymph node status is useful to predict the outcomes of patients and guide the choice of cancer treatment. However, there is still lack of a low-cost non-invasive method to assess the status of axillary lymph node (ALN). Gene expression signature has been used to assess lymph node metastasis status of breast cancer. In addition, nucleosome footprint of cell-free DNA (cfDNA) carries gene expression information of its original tissues, so it may be used to evaluate the axillary lymph node status in breast cancer. METHODS: In this study, we found that the cfDNA nucleosome footprints between the ALN-positive patients and ALN-negative patients showed different patterns by implementing whole-genome sequencing (WGS) to detect 15 ALN-positive and 15 ALN-negative patients. In order to further evaluate its potential for assessing ALN status, we developed a classifier with multiple machine learning models by using 330 WGS data of cfDNA from 162 ALN-positive and 168 ALN-negative samples to distinguish these two types of patients. RESULTS: We found that the promoter profiling between the ALN-positive patients and ALN-negative patients showed distinct patterns. In addition, we observed 1071 genes with differential promoter coverage and their functions were closely related to tumorigenesis. We found that the predictive classifier based on promoter profiling with a support vector machine model, named PPCNM, produced the largest area under the curve of 0.897 (95% confidence interval 0.86-0.93). CONCLUSIONS: These results indicate that promoter profiling can be used to distinguish ALN-positive patients from ALN-negative patients, which may be helpful to guide the choice of cancer treatment.


Asunto(s)
Neoplasias de la Mama , Ácidos Nucleicos Libres de Células , Humanos , Femenino , Neoplasias de la Mama/genética , Metástasis Linfática/genética , Nucleosomas , Ganglios Linfáticos , Ácidos Nucleicos Libres de Células/genética
5.
Phys Chem Chem Phys ; 24(43): 26466-26476, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36300347

RESUMEN

The design of an efficient absorbent is the premise for recovery and resource utilization of hydrogen chloride (HCl) from its industrial tail gases. Herein, a series of 1-butyl-3-methylimidazolium chloride (BmimCl) based-deep eutectic solvents (DESs) were designed and the solubility behavior for HCl was studied in terms of their structure, basicity, free volume, intermolecular interaction energy, and absorption enthalpy. The relationship between the interaction energy and the phase change in the HCl dissolution process was explored in detail. BmimCl-TAA (thioacetamide) (1 : 1) shows high reversible solubility due to its high free volume, suitable absorption enthalpy, and closer H-bonding (HB) interactions between BmimCl and TAA or HCl. The dissolution mechanism of HCl and the dynamic evolution of the HB network were verified by FT-IR and NMR spectra and quantum chemical calculations. The results show that it is the competitive HB interaction that promotes the dissolution of HCl, reduces the absorption enthalpy, and renders a reversible absorption. Compared with BmimCl, the absorption enthalpy of HCl in BmimCl-TAA (1 : 1) is reduced by 25% and the reversible solubility increased 150%. The reversible solubility of HCl in BmimCl-TAA (1 : 1) is as high as 0.51 g g-1 (1.76 mol mol-1) at 303.15 K and 101.3 kPa, and the absorbent can be regenerated facilely by heating under reduced pressure. This work provides new insights into the rational design of DES for efficient and reversible absorption of HCl and other polar gases.

6.
Langmuir ; 35(40): 12979-12985, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31525938

RESUMEN

The evaporation of a hexane lens on a distilled water surface was experimentally and theoretically studied. The formation of the hexane lens was recorded by a high-speed camera from the side to observe the variations of the contact diameters and contact angles. The experimental results showed that the shape variation of the hexane lens experienced the spreading stage and the evaporation stage. The spreading stage lasted for about 6% of the lens lifetime. For most time of the evaporation stage, the square of the lens contact radius decreased linearly with time, while the contact angle remained almost unchanged. During the final rapid evaporation stage (about 2% of the lens lifetime), the shape of the hexane lens changed and the lens shrank rapidly until it disappeared. A theoretical model based on diffusion-controlled evaporation under the constant contact angle mode was developed to describe the evaporation of the hexane lens on the water surface. In terms of geometry, the model assumes that a lens is composed of upper and lower spherical caps, and the apparent contact angle is defined based on the intersection of the two caps. The results calculated using the model were found to be in good agreement with the experimental data. Finally, the effects of initial lens volume, water temperature, and water surface deformation on lens evaporation were discussed through calculations. The results showed that increase in the water temperature and deformation of the water surface accelerated the evaporation process.

7.
Eur Phys J E Soft Matter ; 42(12): 159, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31863297

RESUMEN

Compared to nanofluids with spherical particles, nanofluids with anisotropic particles possess higher thermal conductivity and present a better enhancement option in heat transfer applications. The viscosity variation of such nanofluids becomes of great importance in evaluating their pumping power in thermal systems. This paper presents a comprehensive review of the experimental and theoretical studies on the viscosity of nanofluids with anisotropic particles. The internal mechanisms of viscosity evolution are investigated considering three aspects: particle clustering, particle interactions, and Brownian motion. In experimental studies, important factors including classification and synthetic methods for particle preparation, base fluid, particle loading, particle shape and size, temperature, p H, shear stress and electric field are investigated in detail. Classical theoretical models and empirical relations of the effective viscosity of suspensions are discussed. Some crucial factors such as maximum particle packing fraction, fractal index and intrinsic viscosity models, are examined. A comparison of predictions and experimental results shows that the classical models underestimate suspension viscosity. A comprehensive combination of the modified Krieger-Dougherty (K-D) model with intrinsic viscosity relations for different aspect ratios is suggested for low particle loadings, and the modified Maron-Pierce model (M-D) is recommended for high particle loadings. Possible directions for future works are discussed.

8.
Eur Phys J E Soft Matter ; 42(2): 17, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30788606

RESUMEN

The suppression or enhancement of the "coffee ring" effect depends on whether nanoparticles easily adhere to the gas-liquid interface and particle shape. To obtain deposition patterns of suspensions of nanoparticles strongly deviating from spheres, which is less studied in the literature, prolate ellipsoidal and cylindrical rod-shaped particles with a minimum aspect ratio of 4 are selected. Dynamic viscosity, which is a function of particle shape and volume fraction, is introduced into the evolution equations for film thickness and particle concentration. The nanoparticle deposition features and the contact line dynamics are examined numerically, and the effect of particle shape on the drying process is analysed. The results show that the contact line is in the depinning state during the droplet shrinkage, while the concentration and effective layer thickness of nanoparticles in the ring-formation region decrease with time, and the deposition band widens. The deposition ring height increases, and the recession of the contact line slows down with increasing aspect ratio. This means that for nanoparticles deviating strongly from spheres and not easily adhering to the gas-liquid interface, the "coffee ring" effect is enhanced when the suspension dries. A larger aspect ratio leads to a more obvious "coffee ring" feature.

9.
J Environ Manage ; 244: 1-12, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31103729

RESUMEN

Activated carbon supported nano zero-valent iron material (NZVI/AC) was prepared and added to an anaerobic digestion tank to reduce the toxicity inhibition of phenols and increase the methane yield of phenol-containing organic wastewater (POW). The anaerobic digestion (AD) characteristics, including conversion rate of organic substances, removal rate of phenol, and methane yield of POW with different concentrations of phenol were studied, and moreover, the enhancing effects of NZVI/AC on the AD of POW were focused. When the concentration of phenol was below 500 mg/L, the methane yield from AD of POW was 387.5 mL, which was 10.71% higher than that from control organic water without phenol, however, phenol concentrations greater than 1000 mg/L severely inhibited AD, and methane yield was only 50% of the control sample. Indicating that anaerobic microorganisms had a certain degree of tolerance to phenol, and low concentration of phenol could promote AD of organic water although the phenol with high concentration showed severe inhibition. The methane yield increased due to the probable conversion of phenol to methane by microbial actions. In the AD of POW with 500 mg/L phenol, the conversion rate of organic substances increased from 37.49% (control group without any accelerant) to 66.56% after adding NZVI/AC. The removal rate of phenol also increased from 39.03% to 81.32%. Cumulative methane yield increased by 145.5%-810 mL compared with the control group. The AC carrier in NZVI/AC exerted a good adsorption effect on phenols, reducing the concentration of phenols in the solution and thus minimizing their toxic effects on microbial activity. The NZVI loaded on AC particles strengthened the electron transfer between methanogens by its good electrical conductivity, and then promoted the AD performance of organic matter. Furthermore, NZVI exerted a micro-electrolytic effect on phenolic substances, which could increase the removal rate of phenol. Therefore, NZVI/AC could be used as an efficient accelerant for the AD of POW to enhance the AD process.


Asunto(s)
Carbón Orgánico , Aguas Residuales , Anaerobiosis , Hierro , Fenol , Fenoles , Aguas del Alcantarillado
10.
Angew Chem Int Ed Engl ; 58(16): 5297-5301, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30628149

RESUMEN

Graphene/MOF-based composite materials in three-dimensional (3D) architectures are promising for the treatment of oil-containing wastewater by absorption owing to their intrinsic properties of graphene and metal-organic frameworks (MOFs), such as high porosity, ultralow density, and facilely tailored superwettability. In this study, novel wrinkled 3D microspherical MOF@rGO composites with both superhydrophobic and superoleophilic properties were developed by embedding MOF nanoparticles between graphene oxide (GO) nanosheets, followed by high-temperature reduction self-assembly. The microspherical composites feature a unique micro/nano hierarchy consisting of crumpled reduced GO (rGO) nanosheets intercalated with well-dispersed MOF nanoparticles. Combined with the superwettability and abundant meso/microporosity, the peculiar architectures of wrinkled ZIF-8@rGO microspheres show very fast absorption rates and high sorption selectivity for organic solvents and oils from water.

11.
Eur Phys J E Soft Matter ; 41(1): 14, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29380274

RESUMEN

A model for the evolution of two droplets laden with insoluble surfactant coalescing on a preset film is established according to the lubrication theory, and the coalescence processes are simulated. The role of the surfactant and its inherent mechanism are investigated, the effects of the Marangoni number, the preset liquid film thickness and the initial spacing between the two droplets on the coalescence are examined. The results show that the droplets encounter each other, gradually overlap, and finally coalesce into a "new" droplet. The Marangoni effect is beneficial to the convergence of the two inner leading fronts of the droplets in the early stage, but it hinders the accumulation of the droplets and subsequent coalescence. Increasing the Marangoni number promotes not only the aforementioned inhibition, but also the convergence of the two leading fronts towards the center, which speeds up the coalescence of the surfactant. Moreover, the diffusion of the surfactant towards the outsides of the droplets is accelerated; hence, its distribution along the droplet surface is more uniform after the coalescence. The droplets and the surfactant undertake a longer "journey" to achieve coalescence when their initial spacing is increased; increasing the preset film thickness shortens the time of coalescence required.

12.
J Environ Sci (China) ; 68: 169-176, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29908736

RESUMEN

For the first time, a series of alkynyl carbon materials (ACMs) were prepared via the mechanochemical reaction of CaC2 with six polyhalogenated precursors, namely CCl4, C2Cl6, C2Cl4, C6Cl6, C6Br6, and C14H4Br10 (ACM-1, ACM-2, ACM-3, ACM-4, ACM-5, and ACM-6, respectively) and used for the adsorptive removal of mercury from aqueous solutions. Based on preliminary investigations, the adsorption of mercury on ACM-5 was studied in depth. Specifically, the effect of pH on mercury adsorptivity, adsorption kinetics, thermodynamics, isotherms, and recyclability was studied. The adsorptivity of mercury on ACMs was found to be closely related to the hydrocarbon precursor, specific surface area of sorbent, and the alkynyl content. ACM-5 showed the best performance and is among the best raw carbonaceous sorbents reported so far, with a Langmuir saturated adsorption capacity of 191.9mgg-1. The promising mercury adsorption performance mainly arises from the strong Lewis soft acid-soft base interactions between the alkynyl groups and mercury ions. The adsorption isotherms could be satisfactorily correlated with the Langmuir equation. The results show that the ACMs can be used as efficient sorbents for the removal of mercury and may also be useful for the adsorption of other heavy metals.


Asunto(s)
Carbono/química , Mercurio/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Termodinámica
13.
Ecotoxicol Environ Saf ; 113: 483-90, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25562177

RESUMEN

In China, coal-mining industries are mainly located in the water shortage areas including arid or semiarid areas. Mine wastewater is used for irrigation of agricultural land in these areas. However, few studies have been conducted to address ecological and food safety risks caused by mine wastewater irrigation. In this research, a pot experiment was performed to examine the effects of mine wastewater irrigation on soil enzymes, physiological properties of wheat and potential risks of heavy metal contamination to wheat crop. Plants were subjected to three mine wastewater irrigation treatments: leacheate of coal gangue (T1), coal-washing wastewater (T2) and precipitated coal-washing wastewater (T3). Plants irrigated with well water were taken as the control (CK). The results showed that mine wastewater irrigation caused adverse effects on soil enzymes, physiological properties and grain yield of winter wheat. At anthesis, T1, T2 and T3 treatments significantly reduced the activities of soil enzymes (urease, sucrase and catalase), root activity and net photosynthetic rate of wheat compared to CK. At maturity, grain yield was decreased by 17.8%, 15.4% and 9.8% by T1, T2 and T3, respectively, as compared to that of CK. Importantly, mine wastewater irrigation resulted in accumulation of heavy metals (Cr, Pb, Cu and Zn) in wheat grain. Contents of these heavy metals in grains of winter wheat subjected to mine wastewater irrigation were significantly higher than those in CK. The comprehensive contamination indexes of wheat grain in T1, T2 and T3 all reached high pollution level. Our results showed that mine wastewater irrigation significantly increased the pollution risk of heavy metals, thus unsuitable for crop irrigation.


Asunto(s)
Riego Agrícola , Metales Pesados/metabolismo , Suelo/química , Triticum/metabolismo , Aguas Residuales/toxicidad , China , Grano Comestible/química , Enzimas/análisis , Concentración de Iones de Hidrógeno , Residuos Industriales , Metales Pesados/análisis , Minería , Fotosíntesis , Raíces de Plantas/efectos de los fármacos , Estaciones del Año , Triticum/crecimiento & desarrollo , Agua
14.
Cytogenet Genome Res ; 144(3): 243-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25592959

RESUMEN

The WRKY transcription factors (TFs) play important roles in responding to abiotic and biotic stress in plants. However, due to its unfinished genome sequencing, relatively few WRKY TFs with full-length coding sequences (CDSs) have been identified in wheat. Instead, the Aegilops tauschii genome, which is the D-genome progenitor of the hexaploid wheat genome, provides important resources for the discovery of new genes. In this study, we performed a bioinformatics analysis to identify WRKY TFs with full-length CDSs from the A. tauschii genome. A detailed evolutionary analysis for all these TFs was conducted, and quantitative real-time PCR was carried out to investigate the expression patterns of the abiotic stress-related WRKY TFs under different abiotic stress conditions in A. tauschii seedlings. A total of 93 WRKY TFs were identified from A. tauschii, and 79 of them were found to be newly discovered genes compared with wheat. Gene phylogeny, gene structure and chromosome location of the 93 WRKY TFs were fully analyzed. These studies provide a global view of the WRKY TFs from A. tauschii and a firm foundation for further investigations in both A. tauschii and wheat.


Asunto(s)
Genoma de Planta , Poaceae/genética , Factores de Transcripción/genética , Proteínas de Unión al ADN/genética
15.
Microbiol Spectr ; 12(6): e0379123, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747583

RESUMEN

The upper and lower respiratory tract may share microbiome because they are directly continuous, and the nasal microbiome contributes partially to the composition of the lung microbiome. But little is known about the upper and lower airway microbiome of early postoperative lung transplant recipients (LTRs). Using 16S rRNA gene sequencing, we compared paired nasal swab (NS) and bronchoalveolar lavage fluid (BALF) microbiome from 17 early postoperative LTRs. The microbiome between the two compartments were significantly different in Shannon diversity and beta diversity. Four and eight core NS-associated and BALF-associated microbiome were identified, respectively. NS samples harbored more Corynebacterium, Acinetobacter, and Pseudomonas, while BALF contained more Ralstonia, Stenotrophomonas, Enterococcus, and Pedobacter. The within-subject dissimilarity was higher than the between-subject dissimilarity, indicating a greater impact of sampling sites than sampling individuals on microbial difference. There were both difference and homogeneity between NS and BALF microbiome in early postoperative LTRs. High levels of pathogens were detected in both samples, suggesting that both of them can reflect the diseases characteristics of transplanted lung. The differences between upper and lower airway microbiome mainly come from sampling sites instead of sampling individuals. IMPORTANCE: Lung transplantation is the only therapeutic option for patients with end-stage lung disease, but its outcome is much worse than other solid organ transplants. Little is known about the NS and BALF microbiome of early postoperative LTRs. Here, we compared paired samples of the nasal and lung microbiome from 17 early postoperative LTRs and showed both difference and homogeneity between the two samples. Most of the "core" microbiome in both NS and BALF samples were recognized respiratory pathogens, suggesting that both samples can reflect the diseases characteristics of transplanted lung. We also found that the differences between upper and lower airway microbiome in early postoperative LTRs mainly come from sampling sites instead of sampling individuals.


Asunto(s)
Bacterias , Líquido del Lavado Bronquioalveolar , Trasplante de Pulmón , Microbiota , ARN Ribosómico 16S , Receptores de Trasplantes , Trasplante de Pulmón/efectos adversos , Humanos , Microbiota/genética , Líquido del Lavado Bronquioalveolar/microbiología , Masculino , Femenino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Adulto , Pulmón/microbiología , Periodo Posoperatorio , Anciano , Sistema Respiratorio/microbiología
16.
Environ Sci Pollut Res Int ; 30(9): 24479-24493, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36342609

RESUMEN

Optimized fertilizer and tillage management can be an effective strategy for high ecological efficiencies as well as crop yields. The objective of this study was to assess the impact of diverse management practices on carbon footprint, and ecosystem services in a wheat-maize cropping system. An in situ field experiment field was conducted from 2018 to 2020 on the North China Plain, and six treatments were established: deep tillage (DT), shallow tillage (ST), no tillage (NT), deep tillage + adding organic fertilizer (DTF), shallow tillage + adding organic fertilizer (STF), and no tillage + adding organic fertilizer (NTF). The results showed that adding organic fertilizer and the deeper tillage depth caused higher direct CO2 and N2O emission fluxes. DTF treatment significantly increased carbon footprint either per-unit area (CFa) or per-unit net income (CFe). Compared with DT treatment, STF treatment had higher CFa but lower CFe by increasing net income through boosted crop yields. Besides, the highest ecosystem service values (ESV) were present in STF treatment during both 2 years (42,017.13 CNY ha-1 and 43,352.03 CNY ha-1). In conclusion, STF treatment was an optimal management practice to trade-off grain yields and ecological efficiencies in a wheat-maize cropping system. Furthermore, this study highlights that adding organic fertilizer could be an efficient option toward sustainable farmland utilization with high soil carbon sequestration capacity and high ESV.


Asunto(s)
Agricultura , Triticum , Agricultura/métodos , Zea mays , Ecosistema , Fertilizantes , Suelo , Grano Comestible , Fertilización , China
17.
Biomed Pharmacother ; 163: 114806, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37163782

RESUMEN

In 1971, Folkman proposed that tumors could be limited to very small sizes by blocking angiogenesis. Angiogenesis is the generation of new blood vessels from pre-existing vessels, considered to be one of the important processes in tumor growth and metastasis. Angiogenesis is a complex process regulated by various factors and involves many secreted factors and signaling pathways. Angiogenesis is important in the transport of oxygen and nutrients to the tumor during tumor development. Therefore, inhibition of angiogenesis has become an important strategy in the clinical management of many solid tumors. Combination therapies of angiogenesis inhibitors with radiotherapy and chemotherapy are often used in clinical practice. In this article, we will review common targets against angiogenesis, the most common and up-to-date anti-angiogenic drugs and clinical treatments in recent years, including active ingredients from chemical and herbal medicines.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico
18.
Front Immunol ; 14: 1152312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033960

RESUMEN

Pancreatic cancer is one of the most dangerous types of cancer today, notable for its low survival rate and fibrosis. Deciphering the cellular composition and intercellular interactions in the tumor microenvironment (TME) is a necessary prerequisite to combat pancreatic cancer with precision. Cancer-associated fibroblasts (CAFs), as major producers of extracellular matrix (ECM), play a key role in tumor progression. CAFs display significant heterogeneity and perform different roles in tumor progression. Tumor cells turn CAFs into their slaves by inducing their metabolic dysregulation, exacerbating fibrosis to acquire drug resistance and immune evasion. This article reviews the impact of metabolic reprogramming, effect of obesity and cellular crosstalk of CAFs and tumor cells on fibrosis and describes relevant therapies targeting the metabolic reprogramming.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas/patología , Fibrosis , Neoplasias Pancreáticas
19.
Discov Med ; 35(176): 332-342, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272100

RESUMEN

BACKGROUND: It is common to obtain a low detection rate and unsatisfactory detection results in complex infection or rare pathogen detection. This retrospective study aimed to illustrate the application value and prospect of the third-generation sequencing technology in lower respiratory tract infection disease. METHODS: This study recruited 70 patients with lower respiratory tract infection (LRTI). Pathogen detection of bronchoalveolar lavage fluid (BALF) from all patients was performed using nanopore metagenomic sequencing technology and traditional culture. BALF culture combined with quantitiative PCR (qPCR) was used as a reference standard to analyze the sensitivity and specificity of nanopore sequencing technology. The current study also collected the examination results of enrolled samples using technical methods sputum culture, tuberculosis DNA (TB-DNA), and Xpert MTB/RIF and analyzed the detection efficiency of nanopore sequencing for Mycobacterium tuberculosis. RESULTS: The positive rates of pathogens in 70 BALF samples detected by conventional culture and nanopore sequencing were 25.71% and 84.29%, respectively. Among the 59 positive BALF cases using nanopore sequencing, a total of 31 pathogens were identified, of which the proportions of bacteria, fungi, viruses, and other pathogens were 50%, 17%, 32%, and 1%, respectively. Using the results combined with culture and qPCR detection methods as the standard, the pathogen detection of BALF using nanopore sequencing had a sensitivity of 70% and a specificity of 91.7%. Additionally, the positive rate of the detection of M. tuberculosis using nanopore sequencing was 33.3% (6/18). The clinical medication plans of 74.3% (52/70) of the patients were referred to the nanopore sequencing results, of which 31 cases changed their treatment strategy, 21 supported the previous treatment plans, and 90% (47/52) of the patients finally had clinical improvement. CONCLUSIONS: BALF detection using nanopore sequencing technology improves the process of detecting pathogens in patients with LRTI, especially for M. tuberculosis, fungi, and viruses, by reducing the report time from three days to six hours. The clinical application prospect of nanopore sequencing technology is promising in the pathogen diagnosis of LRTI.


Asunto(s)
Mycobacterium tuberculosis , Infecciones del Sistema Respiratorio , Tuberculosis Pulmonar , Tuberculosis , Humanos , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Estudios Retrospectivos , Tuberculosis/diagnóstico , Mycobacterium tuberculosis/genética , Infecciones del Sistema Respiratorio/diagnóstico , Sensibilidad y Especificidad , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
20.
Front Plant Sci ; 14: 1169858, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077637

RESUMEN

Introduction: Zinc (Zn) deficiency causes serious diseases in people who rely on cereals as their main food source. However, the grain zinc concentration (GZnC) in wheat is low. Biofortification is a sustainable strategy for reducing human Zn deficiency. Methods: In this study, we constructed a population of 382 wheat accessions and determined their GZnC in three field environments. Phenotype data was used for a genome-wide association study (GWAS) using a 660K single nucleotide polymorphism (SNP) array, and haplotype analysis identified an important candidate gene for GZnC. Results: We found that GZnC of the wheat accessions showed an increasing trend with their released years, indicating that the dominant allele of GZnC was not lost during the breeding process. Nine stable quantitative trait loci (QTLs) for GZnC were identified on chromosomes 3A, 4A, 5B, 6D, and 7A. And an important candidate gene for GZnC, namely, TraesCS6D01G234600, and GZnC between the haplotypes of this gene showed, significant difference (P ≤ 0.05) in three environments. Discussion: A novel QTL was first identified on chromosome 6D, this finding enriches our understanding of the genetic basis of GZnC in wheat. This study provides new insights into valuable markers and candidate genes for wheat biofortification to improve GZnC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA